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Abstract: The occurrence of planktonic and benthic foraminifers in the uppermost part of the Upper 
Albian carbonate platform in the Tatra Mountains, Inner Carpathians, Poland, is here documented. Study 
section (Żeleźniak gully, Kościeliska Valley, Tatra Mountains) encompass echinoderm-foraminiferal 
limestones, which lied directly below the hardground with stromatolites. These sediments terminated the 
carbonate sedimentation on the Tatric Ridge, which lasted through the Late Jurassic–Early Cretaceous. 
Planktonic foraminifers show that the breakup of carbonate platform took place in this area during the 
Parathalmaninella appenninica Zone (Upper Albian). The composition of benthic foraminiferal 
assemblages, including both agglutinated and calcareous taxa suggests that during the last phase of a 
carbonate platform development, the sea floor of elevated blocks occurred relatively deep, corresponding 
to the outer shelf depths. The comparison of foraminiferal morphogroups from the limestones shows that 
sea floor of this area was characterized by well-oxygenated bottom water conditions with an enhanced 
rate of primary organic matter flux. 
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1. INTRODUCTION 
 

Fragments of the Early Cretaceous carbonate 
platform is preserved in the Barremian–Albian 
sediments in the Tatra Mountains of the Inner 
Carpathians (Passendorfer, 1930; Lefeld, 1968; 
Mišik, 1990; Michalik & Soták, 1990). The 
occurrence of this platform during the Early 
Cretaceous was related to open marine conditions 
with pelagic and hemipelagic sedimentation in the 
Tatric area, which was a part of the of the Central 
Western Carpathian region, within the Western 
Tethys domain (Michalik, 1994). The palaeomagnetic 
data (Grabowski, 1997) from the Tatra Mountains 
indicate their proximity to the European plate at least 
in the post Early Aptian–pre-Coniacian time span. 
The development of the platform and its final demise 
(collapse-like) could be related to regional tectonics 
(Michalik, 1994). The shallow-water facies including 
the Urgonian-type benthic organisms demised in this 

area at different times, since the Early Aptian through 
the Middle Albian (Masse & Uchman, 1997). The 
youngest demise of the carbonate platform took place 
within the Tatric Ridge, preceded there by 
sedimentation of phosphorous-rich limestones with 
stromatolites, which took place on elevated blocks 
(Krajewski, 1981). According to Krajewski (1981), 
this stage of sedimentation, characterized by cyclic 
development of hardgrounds, phosphatic 
mineralization and stromatolitic horizons occurred in 
open shelf environment under conditions of slow 
pelagic sedimentation. 

Biostratigraphic studies on the Albian 
limestone succession from the Tatric sediments were 
carried out by Passendorfer (1930). He dated their 
base for the late Early Albian Douvilleiceras 
mammilatum ammonite Zone, and their top as the 
early Late Albian Mortoniceras inflatum Zone, as 
confirmed by stratigraphically important bivalves. 
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Figure 1. A – Simplified geological map of the Carpathians. B, C – Location of studied area in the Tatra Mountains 
(Inner Carpathians) on the contour map (map after Bryndal, 2014) and on simplified map of ridges, with position of the 
Kościeliska Valley. D – Geological map of the study area around the Żeleźniak gully, a left tributary of the Kościeliska 
Valley (map after Guzik, 1959). E – Albian–Cenomanian lithostratigraphic scheme of the Zabijak Formation and 
lithologic log of the studied Żeleźniak gully section (lithostratigraphy after Krajewski, 2003). 
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The present paper is related to the microfacies 
analysis of the topmost part of the organodetrical 
limestone succession, which is overlied by 
hardground with stromatolites. These sediments 
have been deposited on elevated block within the 
Tatric Ridge. The purpose of this analysis is (a) to 
document the planktonic and benthic foraminiferal 
assemblages from these sediments, (b) to discuss the 
age of the youngest limestone succession and its 
palaeoecologic and palaeobathymetric implications 
using the foraminiferal data as the biogenic markers. 
 

2. GEOLOGICAL SETTING 
 

The Tatra Mountains form the highest part in 
the Central Western Carpathians (Fig. 1A, B), built 
of a Paleozoic crystalline core and a Mesozoic 
(Early Triassic–Late Cretaceous) sedimentary 
sequence. These rocks belong to the High-Tatric 
autochthonous cover and the overthrusted High-
Tatric and Sub-Tatric nappes (Książkiewicz, 1962; 
Andrusov, 1965; Passendorfer, 1983; Froitzheim et 
al., 2008), forming the so-called Tatricum, a part of 
the Inner Carpathians (Plašienka, 2003). The 
youngest part of the sedimentary sequence in the 
Polish part of the Tatra Mountains, mid-Cretaceous 
in age, is referred to the Zabijak Formation 
(Krajewski, 2003). The studied sediments belong to 
the basinal unit of this Formation, distinguished as 
the Żeleźniak Member (Krajewski, 2003; Fig. 1E). 
This Member is represented by foraminiferal, 
echinoderm and echinoderm-foraminiferal 
wackstones, packstones and grainstones, with 
several phosphorite horizons. Its topmost part is 
partly covered by composite hardground with 
phosphorite pebble lag and phosphatic stromatolites. 
The thickness of the Żeleźniak Member is highly 
variable, ranging from 1.5 m (the studied area) to 60 
m. It reflects changes in sedimentary morphology of 
the sea floor due to tectonic processes, which took 
place during deposition of these sediments 
(Krajewski, 2003). 
 

3. MATERIAL AND METHODS 
 

The section studied is located in the Polish 
part of the Tatra Mountains, where the Albian 
limestones crop out in the Żeleźniak gully, a left 
tributary of the Kościeliska Valley, about 100 m 
below 3-m-high waterfall (Fig. 1B–D). The section 
comprises the uppermost part of the Żeleźniak 
Member (Fig. 1E), which contains ca 20 cm thick 
succession of echinoderm-foraminiferal packstone, 
covered by hardground with phosphorite pebble lag 
and phosphatic stromatolites, 10 cm thick. 

High degree of limestone lithification difficult 
with extraction of microfossils from these sediments. 
Therefore, the foraminifers were analysed in 14 thin 
sections, made from 8 samples, collected with an 
average sample interval 3–5 cm (Fig. 1E). This 
technique facilitates an identification of the great 
majority of genera, and partly of the species, 
providing a basis for characterizing assemblage 
compositions, which can be applicable in 
stratigraphic studies and palaeoecological analysis. 
Such quantitative analysis, related to the latter 
aspect, is here proposed based on the morphogroup 
analysis of the agglutinated and calcareous taxa.  

Photomicrographs of foraminifers were taken 
using a stereoscopic microscope Nikon SMZ1500 
with digital camera. The material is housed in the 
Institute of Geography, Pedagogical University of 
Cracow, Poland. 

 
4. FORAMINIFERAL ASSEMBLAGES 

 
The foraminiferal material includes both 

planktonic and benthic (agglutinated and calcareous) 
foraminifers (Table 1).  

Small forms of Hedbergella spp. with 
Hedbergella delrioensis (Carsey) (Plate I: O) and 
Hedbergella praelibyca Petrizzo and Huber (Plate I: 
M, N) dominate among the planktonic taxa, 
associated by other non-keeled forms belonging to 
Favusella washitensis Carsey (Plate I: K, L) and 
Globigerinelloides sp. (Plate I: P). Keeled forms are 
less frequent, being represented by Parathalman-
ninella appenninica (Renz) (Plate I: A, B), Parathal-
manninella balernaensis (Gandolfi) (Plate I: C), 
Pseudothalmanninella cf. ticinensis (Gandolfi) 
(Plate I: F), Pseudothalmanninella cf. subticinensis 
(Gandolfi) (Plate I: G, H), and Praeglobotruncana 
cf. delrioensis Plummer (Plate I: J). Frequencies of 
planktonic Foraminifera are relatively low, 7–15 
specimens per 1 cm2. A few of them are filled with 
pyrite.  

Among the benthic forms, a content of 
agglutinated and calcareous foraminiferal groups is 
nearly the same. The agglutinated benthos (53% of 
the total number of benthic specimens) is moderately 
diversified, without a significant dominance of a 
single species. The most frequent are specimens from 
genera Trochammina (Plate II: M),  
Pseudonodosinella (Plate II: E), Eobigerina (Plate II: 
H, I), and Recurvoides/Plectorecurvoides (Plate II: 
O–Q), which are associated with forms belonging to 
Glomospira (Plate II: D), Ammobaculites (Plate II: F), 
Thalmannammina (Plate II: N), ?Gerochammina 
(Plate II: G), Verneuilinoides (Plate II: L), ?Tritaxia 
(Plate II: J), and Dorothia (Plate II: K). 
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Table 1. Abundances for foraminiferal taxa in the Upper Albian limestone, Żeleźniak Member (Zabijak Formation), 
Tatra Mountains, Inner Carpathians; number of specimens in 6 cm2 (mean surface of thin section of the rock) 

 
  

Echinoderm – foraminiferal 
limestone 

Limestone with 
hardground and 

stromatolite 

Żel-
1a 

Żel-
1b 

Żel-
1c 

Żel-
1d 

Żel-
1h 

Żel-
1e 

Żel-
1f 

Żel-
1g 

Agglutinated: 
Ammobobaculites sp. 2 1 2 3 ˖ ˖ ˖ ˖ 
Ammodiscus sp. ˖ ˖ ˖ 2 1 ˖ ˖ ˖ 
Dorothia gradata 5 ˖ 1 3 2 1 ˖ 1 
Dorothia/Marsonella spp. 6 ˖ 1 4 2 1 ˖ ˖ 
Eobigerina variabilis 7 3 2 6 6 1 ˖ ˖ 
Gerochammina stanislawi ˖ ˖ 4 ˖ ˖ ˖ ˖ ˖ 
Glomospira gordialis ˖ ˖ 4 ˖ ˖ ˖ ˖ ˖ 
Plectorecurvoides alternans ˖ 1 1 ˖ ˖ ˖ ˖ ˖ 
Pseudonodosinella troyeri  4 3 1 11 4 1  1 
Recurvoides imperfectus ˖ ˖ ˖ ˖ 1 ˖ ˖ ˖ 
Recurvoides sp. 5 6 2 7 6 ˖ ˖ ˖ 
Reophax sp. 1 ˖ 4 ˖ ˖ ˖ ˖ ˖ 
Rhabdammina sp. 2 2 1 2 2 2 ˖ ˖ 
Rhizammina sp. 1 ˖ ˖ ˖ ˖ ˖ ˖ ˖ 
Verneuilinoides neocomiensis 1 ˖ 2 ˖ ˖ ˖ ˖ 1 
Thalmannammina meandertornata ˖ 1 1 6 3 ˖ ˖ ˖ 
?Tritaxia sp. ˖ ˖ ˖ ˖ 1 ˖ ˖ ˖ 
Trochammina sp. 7 2 ˖ 9 2 ˖ ˖ ˖ 
Calcareous benthic: 
Astacolus sp. ˖ ˖ 1 1 ˖ 1 ˖ ˖ 
Cibicides sp. ˖ 1 4 4 3 ˖ 3 ˖ 
Dentalina sp. 4 ˖ 1 2 4 ˖ ˖ 2 
Epistommina sp. ˖ ˖ 1 3 1 ˖ ˖ ˖ 
Gavelinelids 11 7 8 28 10 4 3 3 
Oolina sp. ˖ 3 1 1 ˖ ˖ ˖ 1 
Gyroidinoides sp. 1 ˖ 1 4 ˖ ˖ ˖ 1 
Laevidentalina sp. ˖ ˖ 2 ˖ ˖ ˖ ˖ ˖ 
Lagena sp. 2 ˖ ˖ ˖ ˖ ˖ ˖ ˖ 
Lenticulina sp. 1 1 1 2 ˖ ˖ ˖ 1 
Nodosaria sp. 3 1 ˖ ˖ 1 ˖ ˖ ˖ 
Planularia sp. ˖ ˖ 1 ˖ ˖ ˖ ˖ ˖ 
Pleurostomella sp. 1 1 ˖ 1 ˖ ˖ 1 1 
Quadrimorphina allomorphinoides ˖ 1 ˖ ˖ ˖ ˖ ˖ ˖ 
Quinqueloculina sp. ˖ ˖ 1 ˖ ˖ ˖ ˖ ˖ 
Ramulina sp. 1 ˖ 1 1 1 ˖ ˖ ˖ 
Planktonic: 
Favusella washitensis ˖ ˖ ˖ ˖ 1 1 ˖ ˖ 
Hedbergella delrioensis 2 ˖ 1 1 ˖ 1 ˖ 1 
Hedbergella praelibyca 1 ˖ 4 1 5 2 3 ˖ 
Hedbergella sp. 13 6 14 2 5 6 2 2 
Globigerinelloides sp. 1 1 1 ˖ ˖ ˖ ˖ ˖ 
Parathalmanninella appenninica 1 ˖ 1 1 ˖ ˖ ˖ ˖ 
Parathalmanninella balernaensis 1 ˖ ˖ ˖ ˖ ˖ ˖ ˖ 
Praeglobotruncana cf. delrioensis 1 1 ˖ ˖ 1 ˖ ˖ ˖ 
Pseudothalmanninella cf. subticinensis ˖ ˖ ˖ 2 1 ˖ ˖ ˖ 
Pseudothalmanninella cf. ticinensis ˖ ˖ ˖ ˖ ˖ ˖ ˖ ˖ 
Parathalmanninella/Pseudothalmaninella  4 4 6 4 1 ˖ 2 ˖ 
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Plate I. Planktonic foraminifers from the Upper Albian limestone of the Żeleźniak Member, Tatra Mountains, Inner 
Carpathians: A, B. Parathalmanninella appenninica (Renz), A – sample Żel-1d, B – sample Żel-1c; C. Parathalmanni-
nella balernaensis (Gandolfi), sample Żel-1a; D, E. Parathalmanninella sp. umbilico-convex, sample Żel-1b; F. 
Pseudothalmanninella cf. ticinensis (Gandolfi), sample Żel-1d; G, H. Pseudothalmanninella cf. subticinensis 
(Gandolfi), sample Żel-1e; I. Parathalmanninella/Pseudothalmanninella sp., sample Żel-1f; J. Praeglobotruncana cf. 
delrioensis Plummer, sample Żel-1a; K, L. Favusella washitensis Carsey, K – sample Żel-1h, L – sample Żel-1e; M, N.  
Hedbergella praelibyca Petrizzo and Huber, sample Żel-1f; O. Hedbergella cf. delrioensis (Carsey), sample Żel-1c; P. 
Globigerinelloides sp., sample Żel-1c. Scale bar: 100 µm. 
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Plate II. Benthic foraminifers from the Upper Albian limestone of the Żeleźniak Member, Tatra Mountains, Inner 
Carpathians: A. Psammosiphonella cylindrica (Glaessner), sample Żel-1d; B. Rhabdammina cf. linearis Brady, sample 
Żel-1b; C. Rhizammina sp., sample Żel-1a; D. Glomospira gordialis (Jones & Parker), sample Żel-1h; E. 
Pseudonodosinella troyeri (Tappan), sample Żel-1d; F. Ammobaculites irregularis Gümbel, sample Żel-1d; G. 
?Gerochammina stanislawii (Neagu), sample Żel-1c; H, I. Eobigerina variabilis (Vašiček), H – sample Żel-1h, I – sample 
Żel-1a; J. ?Tritaxia sp., sample Żel-1h; K. ?Dorothia gradata (Berthelin), sample Żel-1a; L. Verneuilinoides neocomiensis 
Mjatliuk, sample Żel-1c; M. Trochammina sp., sample Żel-1d; N. Thalmannammina meandertornata Neagu & 
Tocorjescu, sample Żel-1h;  O, P. Plectorecurvoides alternans Noth, O – sample Żel-1c, P – sample Żel-1b; Q. 
Recurvoides imperfectus (Hanzlikova), sample Żel-1h; R. Lagena sp., sample Żel-1b; S.  Nodosaria sp., sample Żel-1d; T. 
Laevidentalina sp., sample Żel-1c; U. Dentalina sp., sample Żel-1a; V, Nodosaria sp., sample Żel-1a; Scale bar: 100 µm. 
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Plate III. Benthic foraminifers from the Upper Albian limestones of the Żeleźniak Member, Tatra Mountains, Inner 
Carpathians: A. Quinqueloculina sp., sample Żel-1c; B. Pleurostomella sp., sample Żel-1b; C. ?Pleurostomella sp., 
sample Żel-1d; D. ?Lagena sp., sample Żel-1a; E. Planularia sp., sample Żel-1c; F. ?Astacolus sp., sample Żel-1c; G. 
Lenticulina sp.,  sample Żel-1b; H. Epistommina sp., sample Żel-1c; I. Gyroidinoides sp., sample Żel-1d; J. 
Quadrimorphina allomorphinoides (Reuss), sample Żel-1b; K. Berthelina sp., sample Żel-1b; L. Cibicides sp., sample 
Żel-1c; M–Q – gavelinids, N, P – sample Żel-1a, M, O, Q – sample Żel-1d. Scale bar: 100 µm. 
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Tubular forms are rare, represented by 
Psammosiphonella cylindrica (Glaessner) (Plate II: 
A), Rhabdammina cf. linearis Brady (Plate II: B), 
and Rhizammina sp. (Plate II: C). 

The calcareous benthic foraminifers comprise 
numerous gavelinids (Plate III: J–Q) and forms from 
genera Cibicides (Plate III: L), Gyroidinoides (Plate 
III: I), and Epistommina (Plate III: H). Lagenids are 
less frequent, including genera Lagena (Plate II: R), 
Nodosaria (Plate II: S, V), Laevidentalina (Plate II: 
T), Dentalina (Plate II: U), Pleurostomella (Plate III: 
B, C), Lenticulina (Plate III: G), ?Astacolus (Plate 
III: F), and ?Planularia (Plate III: E). Only single 
specimen of miliolid group (Quinqueloculina sp.) 
has been found in the echinoderm-foraminiferal 
limestone (Plate III: A). 
 

5. DISCUSSION 
 
5.1. Biostratigraphy 

 
Planktonic foraminiferal assemblages 

comprise a few stratigraphically important species, 
which define a position of the studied limestone 
succession. The occurrence of Parathalmanninella 
appenninica occurring together with P. 
balernaensis, Pseudothalmanninella cf. ticinensis 
and P. cf. subticinensis is typical of the P. 
appenninica Zone. As the interval zone, its base is 
defined as the first occurrence (FO) of the zonal 
marker, and the upper boundary is placed in the FO 
of Thalmanninella globotruncanoides. Based on the 
correlation of the foraminiferal zonation with other 
biozonations and chronostratigraphy (Gale et al., 
2011), the P. appenninica Zone, as the taxon 
commonly used in the zonations of the Tethyan 
successions (Caron, 1985; Bąk, 1992; Robaszynski 
& Caron, 1995; Hart et al., 1996, Bąk M. & Bąk K., 
1999; Bąk & Oszczypko, 2000; Neagu, 2005) 
corresponds to the Upper Albian, calibrated by cycle 
stratigraphy studies in numerical age model as 100–
98 Ma (Gale et al., 2011; Ogg & Hinnov, 2012). 

The presented foraminiferal data, related to 
the youngest part of the Tatric carbonate platform 
are in agreement with the biostratigraphic results 
coming from the overlying marly strata, which have 
been studied in this area in other sections (Bąk K. & 
Bąk M., 2013). The micropalaeontological material 
occurring in the overlying marls is more abundant. 
As a consequence of this, more diversified 
planktonic foraminiferal assemblages have been 
determined in the marls, including among others 
Planomalina buxtorfii (Gandolfi), one of several 
keeled taxa. This species has not been found in the 
studied limestones. According to the foraminiferal 

zonations from the pelagic and hemipelagic 
succession in Hautes Alps (Gale et al., 2011), which 
was used in the interregional correlations of the 
Middle–Upper Albian successions (Ogg & Hinnov, 
2012), the FAD and the LAD data of P. buxtorfii are 
within the P. appenninica Zone, in its upper part. It 
may suggest that sedimentation of the youngest 
limestone succession on the Tatric Ridge terminated 
in the lower part of the P. appenninica Zone. 

Besides the planktonic taxa, the foraminiferal 
assemblages from the studied limestones contain 
agglutinated forms including numerous specimens of 
Plectorecurvoides alternans (Noth), an index 
species in benthic zonations of the Carpathian 
sediments (Geroch & Nowak, 1984; Neagu et al., 
1992; Bąk et al., 1995; Neagu, 1990; Olszewska, 
1997). The stratigraphic range of this zone is much 
wider than the P. appenninica Zone. Its base was 
reported within the Biticinella breggiensis Zone, 
correlated with the Middle Albian, and the top – in 
the Rotalipora reicheli Zone, corresponded to the 
Middle Cenomanian (Bąk, 2000). In the 
Carpathians, its frequent occurrence, which is 
characteristic for the studied succession, was 
documented from the Upper Albian–Lower 
Cenomanian substages (Olszewska, 1997; Neagu, 
1990; Melinte-Dobrinescu et al., 2015).   
 

5.2. Palaeoecology based on foraminiferal 
morphogroups 
 

Palaeoecological interpretation of benthic 
foraminiferal assemblages by means of morpho-
group analysis is commonly used in environmental 
interpretation of the sea floor (Nagy, 1992; Kender 
et al., 2008; Reolid et al., 2008; Cetean et al., 2011; 
Setoyama et al., 2011; Bąk et al., 2014; Melinte-
Dobrinescu et al., 2015). The morphogroup concept 
use the idea that species with the same test shape 
have the same life-style and feeding strategies, and 
in this way, distribution and abundance of 
morphogroups can reflect changes in selected 
environmental parameters (Jones & Charnock, 1985; 
Kaminski et al., 1995; Kaminski & Gradstein, 2005; 
Murray et al., 2011). 

The agglutinated and calcareous foraminifera 
from the limestones studied are treated separately, 
and are arranged in separate morphogroup sets. 

 
5.2.1. Agglutinated foraminiferal 

morphogroups 
The agglutinated assemblages are dominated by 

elongated tapered and subcylindrical forms including 
Pseudonodosinella, Reophax, Ammobaculites, 
Eobigerina, Gerochammina, Verneuilinodes, 
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Marsonella and Dorothia. They comprise 62.5% of the 
total number of assemblages among the agglutinated 
taxa (Fig. 2). Elongated, uniserial forms (Reophax, 
Pseudonodosinella) as detrivore and bacterial 
scavangers (Nagy, 1992; Tyszka, 1994) may live as 
deep infauna that was documented on the basis of 
observations of their modern counter-parts (Mackensen 
& Douglas, 1989; Hunt & Corliss, 1993; Kaminski et 
al., 1995). Reophax may live both in shallow-water 
(lagoonal) environments (Hughes, 2000), through the 
mid to outer shelves (e.g. Olóriz et al., 2006; Reolid et 
al., 2008), up to deep-water settings (Schafer et al., 
1981). Pseudonodosinella is typical of bathyal-abyssal 
environments (Geroch & Kaminski, 1995). Similar 
ecologic features are related to occurrence of other 
elongated uniserial forms from genera Ammobaculites 
and Bulbobaculites possessing initial coiled phase 
(Barnard et al., 1981; Nagy, 1992; Tyszka, 1994; 
Hughes, 2004). These taxa are less tolerant for low 
oxygen content in the sediments. In mid-Cretaceous 
pelagic/hemipelagic facies, their numerous occurrence 
is related to red coloured, oxygenated marls (Bąk, 
2000; Melinte-Dobrinescu et al., 2015). However, 
they can also tolerate reduced salinity and oxygen by 
reducing of uncoiled portion of the test, reducing size 
and dimensions of grains, which were agglutinated into 
the test (Barnard et al., 1981; Jenkins, 2000; Hughes, 
2004; Reolid et al., 2008). Elongated subcylindrical 
taxa, which are represented in the sediments studied by 
Eobigerina, Gerochammina, Marsonella and Dorothia 
were interpreted as deep infaunal forms (e.g. Nagy, 
1992; Tyszka, 1994; Bąk, 2004; Cetean et al., 2011; 
Löb & Mutterlose, 2012; Reolid et al., 2012; Nikitenko 
et al., 2013). 

The elongated forms are associated in the 
limestones with plano-convex trochospiral 
(Trochammina) and rounded trochospiral/ streptospiral 
(Recurvoides and Thalmannammina) taxa, which 
consists of 33.3% of the total number of agglutinated 
tests. Flattened planispiral/streptospiral taxa 
(Ammodiscus, Glomospira and Repmanina) are very 
rare, not exceeding 5% (Fig. 2). All mentioned above 
morphogroups are interpreted as epifauna with various 
feeding strategies, as active or passive herbivores, 
detrivores and omnivores, similarly as was suggested 
by Jones & Charnock (1985), Nagy (1992), Tyszka 
(1994), Bornmalm et al., (1997), Jenkins (2000), 
Kaminski & Gradstein (2005), Reolid et al., (2008). 
They may live in environments with various 
concentration of organic carbon, at both well and 
poorly oxygenated bottom water (Jenkins, 2000), 
however, they may be frequent at sea floor with low 
oxygen content in sediment-water interface (Jenkins, 
2000 or as opportunists in stress environments (Bąk, 
2000; 2007). 

 
Figure 2. Percentage content of foraminiferal 
morphogroups according to test morphology and feeding 
strategies, calculated separately for agglutinated and 
calcareous assemblages; the Upper Albian limestone, 
Tatra Mountains, Inner Carpathians. 
 

5.2.2. Calcareous benthic foraminiferal 
morphogroups 

The calcareous benthic assemblages are 
dominated by plano-convex trochospiral forms with 
rounded periphery, including mainly gavelinelids, 
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which are associated with Gyroidinoides (48% of the 
total number of the calcareous tests; Fig. 2). They are 
interpreted as epifaunal active deposit feeders, which 
favored life conditions especially on calcareous 
sediment (Hradecka, 1993), under well oxygenated 
bottom water conditions (Kaiho, 1994, 1999). 
Gavelinelids are typical of shelf environments 
(Gawor-Biedowa, 1972; Peryt, 1983; Hradecka, 
1993; Speijer & Van der Zwaan, 1996, Tyszka, 
2006). Gyroidinoides that occurs subordinately in the 
sediments studied is not sensitive to changes in 
oxygen and nutrient contents, occurring both in 
oligotrophic, well-oxygenated and mesotrophic 
environments (Dubicka & Peryt, 2012a, 2012b).  

Other planoconvex trochospiral forms, 
characterized by angular periphery of the tests are the 
second group in the calcareous benthos (20%; Fig. 2), 
interpreted to be epifaunal grazing herbivores. 
Epistommina and Cibicides, included to this group are 
forms typical of outer shelf environment (Samson, 
2001; Olóriz et al., 2006). 

A single miliolid specimen from genus 
Quinqueloculina, found in the studied material 
belongs to the group, which occurs generally in 
intertidal zone and inner shelf of the modern 
environments (Bandy & Arnal, 1957), however, some 
of them may occur in deeper shelf (Jorissen, 1987). 
They are tolerant to a wide range of environmental 
conditions (Murray, 1991). 

All three morphogroups of the calcareous 
benthos, described above are interpreted as epifauna. 
Epifaunal taxa but also adapted to shallow infaunal 
habitats are characterized by elongated uniserial tests, 
containing Nodosaria, Laevidentalina, Dentalina and 
Ramulina in the sediments studied. Their shallow 
infaunal position in the sediment and feeding strategy 
as deposit-feeders to grazing omnivores and/or 
bacterial scavengers were suggested among others by 
Koutsoukos et al., (1990) and Tyszka (1994). 
 Elongated and sphaerical/semisphaerical 
forms with flattened, biconvex and conical test 
morphology are characteristic of infaunal taxa, which 
comprise about 20% of total content of the calcareous 
benthos. However, part of them, discoidal  flattened 
and biconvex forms including Planularia, Astacolus 
and Lenticulina may live also as epifauna in open 
marine outer shelves (e.g. Bernhard, 1986; Tyszka, 
1994; Olóriz et al., 2003, 2006; Löb & Mutterlose, 
2012).  
 

5.2.3. Interpretation 
Foraminiferal assemblages in modern deep-

water environments are controlled by organic carbon 
flux to the sea floor and the oxygen concentration in 
the bottom waters and the uppermost part of the 

sediment (e.g. Hunt & Corliss, 1993; Jorissen, 1987; 
Jorissen et al., 1995; Kaminski et al., 1995; Kaiho, 
1994, 1999; Gooday & Rathburn, 1999; de Rijk et al., 
2000; Gooday et al., 2000; Wollenburg & Kuhnt, 
2000; Szarek et al., 2007; Murray et al., 2011). Water 
depth could be another factor affecting the benthic 
foraminiferal assemblages. The presented above 
composition of agglutinated and calcareous 
morphogroups points to lack of distinct dominance of 
life style and feeding strategy of the particular species. 

A comparison of the morphogroup 
composition with the TROX ecological model by 
Jorissen et al., (1995) explaining benthic 
foraminiferal microhabitat preferences, shows the 
mesotrophic environment with deep position of the 
redox-front in the sediments studied. High level of 
bioturbation visible in thin sections of the rocks 
caused that organic matter was transported to deeper 
sediment layers, where it provided the nutritional 
conditions to agglutinated and calcareous infaunal 
forms. A relatively high proportion of infaunal 
foraminifers within the agglutinated assemblages 
could be indicative of enhanced input of nutrients to 
the basin floor. The origin of the nutrients was most 
probably related to high primary productivity. A 
confirmation of such phenomena is an occurrence of 
highly phosphatized sediments at the top of the 
studied succession. According to Krajewski (1981; 
1984), the phosphate pizolites and phosphate 
cementation of grains occurring directly above the 
echinoderm-foraminiferal limestone  developed in 
microenvironments rich in organic matter.  

Concluding, the well-oxygenated bottom 
water conditions with an enhanced rate of organic 
matter flux from surface plankton production 
characterized the sea floor of elevated block of the 
Tatric area during the Late Albian. 
 

5.3. Palaeobathymetry 
 

Sedimentary features of the limestone studied, 
i.e. homogenous texture of the rocks consisting 
mostly of micritic grains with calcareous biogenic 
particles of similar dimensions (up to 500 µm in 
diameter; 50–200 µm on average), and a lack of 
lamination are suggestive of very slow 
sedimentation, related rather to “flat” surface of the 
shelf than to an inclined area (slope). From 
sedimentological point of view, the lack of 
tempestites in the limestone studied suggests that the 
sea floor was located below storm-driven wave base. 

Comparison of foraminiferal morphogroups 
may help in reconstruction of palaeobathymetry of 
marine sedimentary basins (Kaminski & Gradstein, 
2005; Murray et al., 2011; Setoyama et al., 2011). 
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Tubular agglutinated taxa are practically absent in 
the studied assemblages, what is characteristic 
feature of modern marginal and shelf environments 
(Murray et al., 2011). It is also known from various 
Mesozoic shelf-derived carbonate sediments (e.g. 
Krajewski & Olszewska, 2007; Dubicka & Peryt, 
2012b; Olóriz et al., 2003; Reolid et al., 2008, 2013). 
Lack of forms with quinqueloculine coiling 
(excluding a single specimen of Quinqueloculine 
sp., most probably reworked) shows that the sea 
floor was significantly below depths, which are 
characteristic of marshes and lagoons (Murray et al., 
2011). Modest amounts of multilocular, trochospiral 
agglutinated taxa (Trochammina) suggest deeper 
parts of the shelves, even below the neritic depths 
for the studied environment (Murray et al., 2011). 
Dominance of epifaunal forms among the calcareous 
benthic foraminifers is typical of shelves, both in 
their internal and external parts (Reolid et al., 2008). 
In turn, a high abundance (53%) of agglutinated taxa 
vs calcareous  benthic forms, and enhanced content 
of agglutinated taxa with streptospiral coiling 
(Recurvoides, Thalmannammina, Plectorecur-
voides), is typical of bathyal depths (Kaminski & 
Gradstein, 2005 and references therein). However, 
the range of abundance of the latter morphogroup is 
wider. They are also present in elevated amounts on 
the outer shelf-upper bathyal depths (Setoyama et 
al., 2011).  

Taking into account the presented data, it can 
be assumed that deposition of the echinoderm-
foraminiferal limestone within the elevated block of 
the demised Tatric platform was located in the outer 
shelf depths during the Late Albian. 
 

6. CONCLUSIONS 
 
The succession of echinoderm-foraminiferal 

limestone that is covered by hardground with 
phosphatic stromatolites represents the youngest part 
of the Lower Cretaceous carbonate platform of the 
Tatricum in the Inner Western Carpathians. The 
demise of this platform, which begun on the Tatric 
Ridge since the Early Aptian (Masse & Uchman, 
1997), finally terminated within the elevated blocks 
(like that containing the sediments studied) during 
the Parathalmanninella appenninica Chron (in its 
older part), correlated with the Late Albian.  

The composition of foraminiferal 
assemmblages from these limestone suggests that 
the see floor of such fragments of the platform was 
located on the outer shelf depths during that time. It 
shows on significant immersion of this platform 
since the Early Albian, when it was partly 
submerged (Krajewski, 2003). The main reason of 

these bathymetric changes was probably eustato-
stasis change during the Albian, when the sea level 
rised by ~50 m culminating during the P. 
appenninica Chron (Grotsch et al., 1993; Haq, 
2014). The tectonic processes, which took place 
during the Early–Middle Albian (Lefeld, 1968; 
Masse & Uchman, 1997), expressed by development 
of neptunian dykes (Krajewski, 2003), could be 
other important factor in the immersion of this area.  

The sea floor on the elevated block of the 
demised platform was characterized by well-
oxygenated bottom water conditions with an 
enhanced rate of primary organic matter flux.  
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