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Abstract: Bulk density is one of the most important soil parameters, being used in numerous 
hydrological, agricultural or environmental models. Nevertheless, this property is missing from most soil 
surveys in Romania and not only, its determinations being quite time-consuming. Because of this recent 
tendencies have been of deriving this property with the help of pedotransfer functions. Twenty-two 
pedotransfer functions have been tested using a database consisting of 430 soil profiles from Romania, 
with 2017 samples. The results show that many of the PTFs presented by different authors cannot be 
applied for the Romanian territory, being derived from small datasets, for small areas or for regions 
differing in their geographical conditions. The functions with better results have obtained R2s of 0.403-
0.436, MPEs of 0.003-0.04, RMSPEs of 0.157-0.171 and SDPEs of 0.156-0.159. In this situation, it is 
recommended that when estimating bulk density with the help of PTFs, one should take into account the 
mathematical expression and the characteristics of the dataset used in deriving the function. 
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1. INTRODUCTION 
 
One of the frequent problems related to soil 

surveys from Romania and not only is the lack of 
measured values for some properties. Being difficult 
and time-consuming to determine, they do not enter 
the usual measurements conducted by the Romanian 
system of agricultural soil mapping, and hence the 
need for their estimation. 

A recent tendency in soil science is the 
estimation of these parameters with the help of 
pedotransfer functions (PTFs), which have gained 
recognition during the last years as approaches to 
translate simple soil characteristics into more 
complex parameters. They can be defined as 
predictive functions of soil parameters from other 
more easily determined properties (Bouma, 1989; 
McBratney et al., 2002). 

One of the most important parameters that are 
missing from soil surveys is bulk density. It is 
defined as the ratio between the undisturbed dry soil 
mass and the total soil volume. Knowing soil bulk 
density values is important in characterizing the soil 
state, total and air porosity and expressing different 

properties in volume percentage. Bulk density is a 
key parameter in many hydrological or 
environmental models, and is needed in estimating 
carbon or nutrients stocks or water retention 
characteristics (De Vos et al., 2005; Suuster et al., 
2011). 

Bulk density also determines several soil 
physical properties. High values imply a decrease in 
water retention capacity, in permeability, air 
capacity, as well as an increase in the mechanical 
resistance opposed by soil to tillage and plant 
rooting. The relation between bulk density and 
qualitative characteristics of the soil cannot be 
correctly interpreted but in relation to other soil 
properties such as grain-size distribution or organic 
matter content (Canarache, 1990). 

Results of different studies have shown that 
bulk density depends most often on the organic 
matter (OM) or organic carbon (OC) contents and on 
the proportion of different grain-size fractions 
(Curtis & Post, 1964; Adams, 1973; Alexander, 
1980; Harrison & Bocock, 1981; Huntington et al., 
1989; Manrique & Jones, 1991; Federer et al., 1993; 
Bernoux et al., 1998; Tomasella & Hodnett, 1998 
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Prevost, 2004; Benites et al., 2007; Perie & Ouimet, 
2008; Brahim et al., 2012; Han et al., 2012; Hollis et 
al., 2012), that it varies with depth (Huntington et 
al., 1989; Leonaviciute, 2000), soil type (Alexander, 
1980; Manrique & Jones, 1991; Tranter et al., 2007; 
Suuster et al., 2011; Nanko et al., 2014), land use or 
vegetation (Harrison & Bocock, 1981; Suuster et al., 
2011). 

Although PTFs sometimes also use data on 
chemical properties (Benites et al., 2007; Brahim et 
al., 2012; Han et al., 2012), water content (Heuscher 
et al., 2005; Patil & Chaturvedi, 2012), management 
(Hollis et al., 2012), traffic, crop systems or even 
morphometric parameters (Wang et al., 2014), one 
of the most important factor remains the OM content 
(Ruehlmann & Korschens, 2009), which frequently 
explains over 30-50% of the bulk density variance. 

Usually, soil bulk density values decrease 
with the clay content and vary inversely in relation 
to the OM content. Small values are determined for 
organo-mineral and especially organic soils. In the 
case of Romanian mineral soils which present an 
upper horizon with relative high humus content, 
bulk density varies between 0.8-1.2 g/cm3 for the 
topsoil and 1.4-1.6 g/cm3 for the subsoil. 

Due to the absence of this parameter from 
most of the soil surveys, the alternative might be its 
estimation based on correlated properties. There are 
diverse estimation methods (PTFs) elaborated by 
different authors. The methods approached in 
deriving PTFs vary from basic statistical models to 
the most commonly used stepwise multiple 
regressions (Heuscher et al., 2005; Benites et al., 
2007; Bernoux et al., 1998; Brahim et al., 2012; 
Kaur et al., 2002) or to more advanced techniques 
such as artificial neural networks (ANN) and 
regression trees. Some authors hold that the 
advanced methods produce better results (Martin et 
al., 2009; Patil & Chaturvedi, 2012; Al-Qinna & 
Jaber, 2013) while other studies (Tranter et al., 
2007) have demonstrated that these techniques do 
not necessarily improve the performance of the 
models. 

Many of these functions have been elaborated 
for small areas, from small datasets or for certain 
regions, soils or environments, which makes their 
application in other conditions uncertain. 

In the case of Romanian soils, some attempts 
in this direction have been those of Chiriţă (1970) 
and Canarache (1995) for andic and spodic soils and 
using only the OM content. 

In any case, Romania has a very diverse soil 
cover, so no function elaborated has analyzed or 
included all or at least most of the soil types. Taking 
into account these aspects, there even might be the 

possibility that a single PTF would not be 
appropriate for all soil classes. 

The objectives of this paper have thus been of 
testing the performance of a number of published 
PTFs with the help of a Romanian database, and to 
evaluate the respective functions using validation 
indices in terms of accuracy, precision and 
operability. 

 
2. MATERIALS AND METHODS 
 
2.1. Study area and dataset 
 
In order to validate the published PTFs, a 

database was constructed that has included diverse 
soil types from Romania, analyzed at national soil 
conferences, but also other legacy data with detailed 
analyses. Including measured bulk density data and 
many other parameters, the database can be used to 
compute the PTFs and to validate or invalidate the 
published functions for the Romanian territory. 

Romania is characterized by a varied geology, 
with diverse rock types lying over platform or 
orogen regions and also including volcanic areas. 
The altitude of landforms covering these deposits 
ranges from zero to 2544 m altitude, including 
plains, plateaus, hills and mountains. The climate is 
temperate continental, with variations imposed by 
latitude and longitude, but also by the presence of 
the Carpathian belt (Apostol & Sfîcă, 2013) or of 
large river valleys. Mean annual temperatures vary 
from <0ºC, in high mountain areas, to >11ºC, in the 
southern part of the country, annual rainfall 
quantities range from <350 mm to >1200 mm, with 
differences determined mainly by altitude. The 
vegetation areas vary accordingly from steppe in the 
south-eastern part to silvo-steppe, forests (mainly 
beech, oak and spruce) and alpine pastures at the 
highest altitudes (Popovici et al., 2013). In relation 
to this environmental variety, in Romania are found, 
according to the national soil classification system 
(Florea & Munteanu, 2012), 12 classes with 29 soil 
types, which develop in altitude from Cernisols and 
Luvisols to Cambisols, Spodisols and Umbrisols. 
The soil cover is completed by diverse types, from 
Pelisols, Andisols, Hidrisols, Histisols to Anthrisols 
and Salsodisols.  

The database has included 430 soil profiles 
with 2017 horizon samples, from all over the 
country. Most of the samples have been taken from 
altitudes lower than 500 m, about 200 samples from 
500-1000 m and 100 samples from altitudes over 
1000 m. From the total, 658 samples are from 
Cernisols, 578 from Luvisols, 151 from Cambisols, 
209 from Protisols, 80 from saline soils, 63 from 
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vertic soils, the rest being represented by other 
mountainous soils (Spodisols, Umbrisols). Very few 
samples have been included from Andosols (6) and 
Histisols (5). About 1500 samples are from topsoils 
(0-50 cm) and the rest from lower horizons. 

A first step in the analysis has been bringing 
to a common denominator the data, because 
Romania uses a different grain-size distribution 
system than those of the databases used for deriving 
the published PTFs. In order to do this, the Atterberg 
textural data from our database (with the upper limit 
of silt fraction at 0.02 mm) have been converted in 
the USDA system (with the limit at 0.05 mm) with 
the use of the log-linear transformation suggested by 
Wösten et al., (1999). 

 
2.2. Sampling and analytical methods 
 
The soil sampling and analysis has been 

conducted according to the standard methods used in 
Romania (Florea et al., 1987). Disturbed and 
undisturbed samples have been taken from the 
genetic horizons. The disturbed sampling has been 
conducted for the physical and chemical 
characterization, while the undisturbed samples for 
physical determinations have been taken in metallic 
cores of known volume (100 cm3), at the actual soil 
humidity, with four repetitions for each horizon.  

The preparations for laboratory analyses have 
included the separation of organic materials and 
skeleton, followed by grounding and sieving. Grain-
size analysis involves a three variant pre-treatment 
according to the sample composition: 

- for samples including carbonates a treatment 
with 2 n hydrochloric acid and dispersion with 1 n 
sodium hydroxide, Kacinski method; 

- for samples without carbonates and OM > 
5%, the oxidation of OM with hydrogen peroxide 
6% and dispersion with potassium 
hexametaphosphate solution 10% or 1 n sodium 
hydroxide, Kacinski method; 

- for samples without carbonates and OM < 
5%, dispersion with potassium hexametaphosphate 
solution 10%. 

The determination of grain-size fractions is 
conducted by pipetting for the fractions < 0.002 mm, 
by wet sieving for the 0.002-0.2 mm fractions and 
dry sieving for the fractions > 0.2 mm. The results 
are expressed as percentages reported to the material 
left after the pretreatment. 

Bulk density (Bd) is determined by the 
metallic cylinders with known volume (100 cm3) 
method at the momentary soil humidity. 

Total organic carbon is determined by humid 
oxidation according to the method of Walkley-

Black, modified by Gogoaşă (1959). Organic matter 
content is computed using the van Bemmelen factor 
(OM = OC x 1.724). 

 
2.3. Published PTFs 
 
Numerous PTFs have been derived for 

estimating or indirectly determining soil bulk 
density. The problem with these functions is that 
they are frequently created departing from a dataset 
specific for a certain area or soil type, so their 
application in other regions first needs a validation. 

From the many published functions, for 
validation using the Romanian dataset have been 
chosen those of Curtis & Post (1964), Adams 
(1973), Alexander (1980), Harrison & Bocock 
(1981), Federer et al., (1983), Huntington et al., 
(1989), Manrique & Jones (1991), Tomasella & 
Hodnett (1998), Post & Kwon (2000), Kaur et al., 
(2002), Tremblay et al., (2002), Prevost (2004), 
Perie & Ouimet (2008), Han et al., (2012), Hollis et 
al., (2012) (Table 1). 

These functions have been classified in three 
categories, according to the soil parameters that have 
been used by authors in estimating bulk density 
(organic carbon, organic matter, organic carbon and 
grain-size data). 

One of the first attempts at validating PTFs 
has been that of Boucneau et al. (1998), who used 40 
soils (182 samples) from northern Belgium. Their 
results indicated that locally developed functions 
had very small mean prediction errors but weak 
correlation coefficients, while the PTFs of Manrique 
& Jones (1991) had inverse performances, with 
determination coefficients of 0.5-0.6 and mean 
errors of 0.11-0.17 g/cm3. 

Kaur et al., (2002) have evaluated PTFs with 
the help of 224 samples with different land use from 
India, discovering a very weak predictive potential 
due to the development of the functions for specific 
soils or ecosystems. In order to obtain a visible 
accuracy and a better precision in estimating bulk 
density, they recommend using a function for each 
soil class. Their results have shown that the PTFs of 
Curtis & Post (1964), Adams (1973), Federer et al., 
(1993) and Huntington et al., (1989) underestimated 
bulk density values, while Alexander (1980) and 
Manrique & Jones (1991) overestimated. Among the 
methods derived using OM, the best to perform 
seemed to be those of Alexander (1980) and 
Manrique & Jones (1991). The functions of Curtis & 
Post (1964), Adams (1973), Federer et al., (1993), 
Huntington et al., (1989) and Tomasella & Hodnett 
(1998) have been developed for forest soils with 
high contents of OM, and also with specific grain-



228 

size distribution. The validation set included data 
with smaller OM contents and different textures, 
which might explain their weak performance. It 
seems that the models of Manrique & Jones (1991) 
and Alexander (1973), based on larger datasets with 
diverse soils, had a better performance. 

De Vos et al., (2005) have evaluated 12 PTFs 
with the help of a 1614 samples dataset. All the 
functions have produced an underestimation of bulk 
density, with errors of 0.01-0.51 g/cm3. Their 
evaluation has demonstrated the weak performance 
of some PTFs and raised problems related to their 
prediction ability. Validating several functions, Perie 
& Ouimet (2008) obtained correlation coefficients of 
0.42-0.82, the polynomial models predicting better 
in the case of soils with OM <1. 

Han et al., (2012) evaluated 19 PTFs, showing 
that the models developed by Alexander (1980), 
Manrique & Jones (1991) and Perie & Ouimet 
(2008) give relatively good predictions, although the 
first two models are not so good for soils with high 
OM contents. Nanko et al., (2014) have also 
compared a series of functions, most of them 
explaining 63-68% of the variance of bulk density. 
Most of the functions have overestimated, but this is 
due to the use only of soils developed on volcanic 
materials. The nature of the mathematical relations 
that define PTFs is reflected in the estimation of 
bulk density. Non-linear (logarithmic, exponential) 
functions are apparently more realistic, indicating an 
attenuated decrease of bulk density values with the 
increase in the OM content. 

 
Table 1. Published PTFs, sampling area and land use* 

 

Pedotransfer functions (PTFs) Code 
Functions that use only OC 

Manrique & Jones, 1991 Bd = 1.510 - 0.113 x OC A1 
Manrique & Jones, 1991 Bd = 1.660 - 0.318 x OC0.5 A2 
Alexander, 1980 Bd = 1.66 - 0.308 x OC0.5 A3 
Alexander, 1980  Bd = 1.72 - 0.294 x OC0.5 A4 
Huntington et al., 1989 lnBd = 0.263 - 0.147 x ln OC - 0.103 (ln OC)2 A5 
Harrison & Bocock, 1981 Bd = 1.558-0.728 x log (OC)  A6 

Functions that use only OM 
Curtis & Post, 1964 Log(Bd x 100) = 2.09963 - 0.00064 x (log OM) - 0.22302 x (log OM)2 B1 
Federer et al., 1983  lnBd = -2.31 - 1.079 x ln (OM/100) - 0.113 x (ln OM/100)2  B2 
Prevost, 2004 lnBd =-1.81-0.892 x ln(OM/100)-0.092 x ln(OM/100)2 B3 
Perie & Ouimet, 2008 Bd=-1.977 + 4.105 x (OM/100) - 1.229 x ln(OM/100) - 0.103 x ln 

(OM/100)2 
B4 

Han et al., 2012 lnBd = 0.5379 - 0.0653 x (OM x 10)0.5 B5 
Adams, 1973 Bd = 100 / [(OM / 0.224 + (100 - OM) / 1.27)] B6 
Post & Kwon, 2000 Bd = 0.244 x 1.640 / [1.640 x OM + 0.244(1 - OM)] B7 
Tremblay et al., 2002 Bd = 0.120 x 1.400 / [1.400 x OM + 0.120(1 - OM)] B8 
Prevost, 2004 Bd = 0.159 x 1.561 / [1.561 x OM + 0.159(1 - OM)] B9 
Perie & Ouimet, 2008 Bd = 0.111 x 1.767 / [1.767 x OM + 0.111(1 - OM)] B10 
Han et al., 2012 Bd = 0.167 x 1.526 / (1.526 x OM + 0.167(1 - OM)] B11 

Functions that use OC and grain-size data 
Tomasella & Hodnett, 
1989  

Bd = 1.578 - 0.054 x OC-0.006 x S-0.004 x C C1 

Kaur et al., 2002 ln(Bd) = 0.313 - 0.191 x OC + 0.02102 x C - 0.000476 x C2 - 0.00432 
x S 

C2 

Hollis et al., 2012  Bd = 0.80806 + 0.823844 x exp(-0.27993 x OC) + (0.0014065 x N) - 
(0.0010299 x C) 

C3 (cultivated 
topsoils) 

Hollis et al., 2012  Bd = 0.697941 + (0.750636 x exp(-0.230355*OC) + (0.0008687 x N) - 
(0.0005164 x C) 

C4 (all other 
mineral horizons) 

Hollis et al., 2012  Bd = 0.38502 + (1.04817 x exp(-0.070638 x OC) + (0.00090 x N) – 
(0.000715 x C) 

C5 (all other 
horizons) 

*Bd = soil bulk density (g/cm3); OC = organic carbon (%); C = clay (%), S = silt (%), N = sand (%); OM = organic matter (%). In 
the case of OM, units are frequently expressed as %, or g/g for the functions B7, B8, B9, B10, B11. Codes are used for graphical 

representations and for separating functions derived by the same authors. 
 

A frequent problem arises in the case of 
logarithmic functions, namely that below a certain 
value of OM or OC the estimated bulk densities 

register a sudden, unrealistic decrease, so that the 
functions cannot be applied in these intervals. For 
example, in the case of the B1 relation, the decrease 



229 

is manifested at values of OM under 1%, for B2 and 
B3 the effect is manifested under 0.8% OM while in 
the case of A5 at values of OM lower than 0.5%. 
This problem is reflected in the upper flattening of 
the correlation graphs between real and estimated 
values of bulk density (Fig. 1).  

 

 
Figure 1. Theoretical distribution of predicted bulk 

density values for some logarithmic functions 
 
In the case of the B1, B2 and B3 functions 

this flattening occurs at values of 1.257, 1.304 and 
1.422 g/cm3 respectively, which represent the 
maximum values that can be estimated by these 
functions. Similar problems occur in the case of 
linear functions (A1) or of those expressed as 
fractions (B6 … B11). In the case of A1 it can be 
seen that it also generates negative bulk densities at 
OC values higher than 13%. 

All these problematic aspects impose the 
careful verification of the validity domains of the 
PTFs before they can be applied. The mentioned 
problems do not affect the exponential relations (A2, 
A3, A4, B5), which theoretically (mathematically) 
makes them superior to other functions. 

Among the general findings that have been 
drawn in the papers analyzing, deriving or validating 
PTFs are the following: 

- there is an inability of the models to explain 
more than 50-60% of the bulk density variance 
(Calhoun et al., 2001; Käterer et al., 2006), although 
some authors have obtained for their areas or 
datasets values of up to 80%; 

- it seems that soil texture, OC and sample 
depth can only explain a part of the variation in bulk 
density. Terrain management, parent materials, 
particle density, some processes such as swelling or 
morphometric factors can affect bulk density 
(Calhoun et al., 2001; Wang et al., 2013); 

- the prediction capacity of PTFs also depends 
on the mathematical concepts used in generating the 
models and on the variability of predictors (Al-
Qinna & Jaber, 2013); 

- with all the improvements brought in the last 
years, many of the published PTFs have limitations 
when applied to a larger area. This is explained by 
the fact that most models are based on small 
datasets, approach a single land use (e.g. forest) or 
include data that are not usually available (water 
contents). PTFs will give different results according 
to the environment / soil type for which they have 
been derived (De Vos et al., 2005; Hollis et al., 
2012, Patil & Chaturvedi, 2012; Martin et al., 2007). 

- the introduction of soil structure data might 
improve the prediction (Tranter et al., 2007; Hollis 
et al., 2012). 

After selecting the PTFs to be tested according 
to data availability, the next step in determining the 
most suited function for bulk density is computing it 
for the samples in the database and comparing 
estimated and measured values. 

 
2.4. Validation methodology 
 
In general it is recommended that several 

statistical indices should be used in model 
validation. The validation parameters used by 
different authors (Donatelli et al., 2004) include the 
determination coefficient R2 (1), the mean prediction 
error (MPE) (2), root mean square prediction error 
(RMSPE) (3), standard deviation of prediction error 
(SDPE) (4), maximum absolute error (ME) (5) and 
mean absolute error (MAE) (6). 
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where n is the number of observations, Ei are 

the estimated values of bulk density, Mi are is the 
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measured values of bulk density and var, cov stand 
for variance and covariance respectively. 

The coefficient of determination indicates how 
well the data fits a statistical model, providing a 
measure of how well measured values are estimated 
by the model. The mean prediction error evaluates 
accuracy errors or the positive or negative systematic 
bias of the model, indicating a mean tendency of 
over- or underestimation. The RMSPE is a measure 
of the differences between predicted and observed 
values, being a good measure of model accuracy and 
of total prediction error. SDPE is often used for 
measuring precision errors, as it shows the random 
variation of the predictions after the application of a 
correction for global bias. SDPE is usually affected 
by the limited precision of the models, the local 
deviations of the models from real situations, the 
inherent variability of the measured property and by 
determination errors (De Vos et al., 2005). 

While R2 should have higher values, MPE, 
RMSPE and SDPE have to be as small as possible 
(Benites et al., 2007). 

Alexander (1980) states that MPEs of 0.15-
0.30 are acceptable, as bulk densities might increase 
through compaction. De Vos et al., (2005) consider 
that prediction errors should be of 0.14-0.29 for all 
the samples and of 0.12-0.25 for the topsoil ones. 

 
3. RESULTS 
 
3.1. Statistics of the database 
 
The descriptive statistical indices calculated for 

the validation database (Table 2) show that the grain-
size fractions are characterized by important 
dispersions in relation to the mean (variation 
coefficients between 39 and 47%). The reduced values 
of asymmetry indicate a relatively normal distribution 
of the values. On the other hand, values of organic 
matter and organic carbon are less dispersed around the 
mean (variation coefficients of 12.5-12.7%), yet their 
distributions present pronounced left asymmetries. 
This is indicated by the high skewness values and is 
explained by the presence of a few very large values 
associated to organic soils.  

Bulk density values are characterized by a mean 
of 1.33 g/cm3 and a maximum variation range between 
0.46 and 1.85 g/cm3. The distribution of the values is 
slightly right asymmetric due to the presence of some 
smaller values characteristic to the same organic / 
histic soils or of horizons with andic properties. 

The values of bulk density are significantly 
differentiated according to soil classes (Fig. 2). The 
highest mean values are specific to Antrisols (1.48 
g/cm3) and Luvisols (1.41 g/cm3). In the first case 

these values are explained by the inclusion of 
compacted soils, while in the later responsible is the 
high clay content of the Bt horizons. The lowest mean 
values of bulk density are those of Andisols (0.77 
g/cm3), explained by the influence of the volcanic 
parent material with high porosity, but also Histisols 
(0.84 g/cm3), Spodisols (0.88 g/cm3) and Umbrisols 
(1.006 g/cm3) where the responsible factor is the 
abundance of weakly humificated organic materials. 
The most important variations in bulk density values 
are characteristic for Cambisols, due to varied parent 
materials these soils are formed on. Antrisols have the 
lowest variations, most probably due to generalized 
compaction that determines high bulk density values. 
The relation between the mean and the median 
indicates in the case Andisols, Antrisols, Cambisols, 
Histisols, Luvisols and Salsodisols positive 
asymmetries of the distributions, with a domination of 
low bulk density values. Umbrisols are characterized 
by a negative asymmetry, the mean being higher than 
the median and indicating a dominance of bulk 
density values higher than the mean. The other soil 
classes (Cernisols, Hidrisols, Pelisols, Protisols, 
Spodisols) have relatively equilibrated distributions. 

 
Table 2. Descriptive statistics of the database used 

 

 Sand Silt Clay OM OC Bd 
Min 3.36 0.5 0.17 0.03 0.017 0.46 
Max 98.6 54.8 88.9 33.05 19.17 1.85 
Mean 46.5 21.2 32.3 2.49 1.43 1.33 
Median 43.3 21.9 31.7 1.68 0.96 1.36 
St dev 19.4 8.29 15.3 3.16 1.78 0.197 
Skewness 0.65 -0.21 0.33 4.32 4.22 -1.07 
Kurtosis 0.14 0.55 0.21 25.94 24.80 2.11 
1st quartile 34 16.9 22.3 0.8 0.46 1.24 
3rd quartile 55.8 26.4 41.5 2.9 1.67 1.47 
CV% 41.8 39.1 47.5 12.68 12.5 14.7 

 
These differences in the statistics of the 

database indicate similar behaviors of some soil 
classes (Cernisols, Luvisols, Pelisols, Salsodisols, 
Protisols, characterized by high values of bulk 
density and moderate variations in relation to central 
values; Andisols, Histisols, Spodisols, Umbrisols 
with lower bulk density values and important 
variation limits), suggesting that a differentiated 
analysis in the elaboration of PTFs would be better. 

 
3.2. Comparing PTFs performances 
 
The determination coefficient values (Table 3, 

Fig. 4) demonstrate that a large part of the more 
simple functions, derived using only organic matter or 
carbon, achieve better results even if they do not 
exceed 0.44. 
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Figure 2. Bulk density variation according to soil class 

 
The best results are obtained by the functions 

of Post & Kwon (2000), Han et al., (2012, B11), 
Tremblay et al., (2002), B10 of Perie & Ouimet 
(2008), B9 of Prevost (2004), Adams (1973), A2 of 
Manrique & Jones (1991) and Alexander (1980). 
The lowest values are obtained by the PTFs of 
Federer et al., (1993), Huntington et al., (1989), 
Curtis & Post (1964) and B3 of Prevost (2004) from 
the category of those using only organic matter, and 
by Tomasella & Hodnett (1998) or Kaur et al., 
(2002) among the PTFs including also textural data. 
The weak performance of most of the functions can 
be explained by the use of logarithms in PTFs, 
which determine a limitation at the upper limit of 
values, and in the case of Tomasella & Hodnett 
(1998) or Kaur et al., (2002) by the specific datasets 
used in PTF derivation. The reduced values of R2 are 
also in strong relation to the database used, in which 
OM and texture data explain only 37-39%, 
respectively less than 1% of the bulk density 
variance. This indicates that the PTFs that include 
soil texture data will not necessarily give better 
results. 

MPE values indicate the fact that a part of the 
functions underestimate bulk density (Kaur et al., 
2002; Tremblay et al., 2002; Curtis & Post, 1964; 
Adams, 1973), while other overestimate (Harrison & 
Bocock, 1981). The PTFs that have the lowest MPEs 
are mostly those that use only organic matter or 
carbon: Manrique & Jones (1991), Alexander 
(1980), Prevost (2004), Han et al., (2012), but also 
some of the functions using soil texture, such as 
those of Hollis et al., (2012) (MPEs of 0.02-0.10). 

In the case of RMSPE / SDPE, the functions 
giving better results are those of Manrique & Jones 
(1991), Alexander (1980), Han et al., (2012), B9 of 
Prevost (2004) and the PTFs of Hollis et al., (2012) 
for mineral horizons. The values of mean absolute 
errors indicate the same functions as performing 
better, with results of 0.123-0.132 g/cm3. The ME 
are in most cases of 0.7-0.9 g/cm3, although the 
functions of Harrison & Bocock (1981), A1 of 
Manrique & Jones (1991), Federer et al., (1993) and 
Kaur et al., (2002) stand out with values over 1.0 
g/cm3. The best results have been obtained by the 
B11, A3, B9, A2, B5 and B10 functions. With good 
overall results but with smaller R2 values are the C4 
and C5 functions of Hollis et al., (2012). 

The same situation results from figure 3, 
which presents the MPE2 vs SDPE2 values of the 
tested models (suggested by De Vos et al., 2005) and 
shows the best PTFs located near the origin. 

The performance of Han et al., (2012) and 
Hollis et al., (2012) functions might be influenced 
by the fact that they have been obtained from large 
datasets that have included diverse environmental 
conditions and soils from China or Europe. 
Manrique & Jones’s (1991) PTFs have also been 
derived using a large dataset, even if for forest soils, 
many authors obtaining good results for it (including 
Hollis et al., 2012 for mineral soils). The use in PTF 
derivation only of forest soils might explain the 
weak performance for our database in the case of 
Curtis & Post (1964), Federer et al., (1993), 
Huntington et al., (1989), Adams (1973) or 
Tremblay et al., (2002). 
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Table 3. Validation statistics for the analyzed PTFs* 
 

Models R2 MPE RMSPE SDPE MAE ME 
Functions using OC 

Manrique & Jones, 1991 A1 0.376 0.012 0.175 0.175 0.124 1.283 
Manrique & Jones, 1991  A2 0.403 -0.013 0.160 0.159 0.123 0.821 
Alexander, 1980 A3 0.403 -0.003 0.157 0.157 0.123 0.831 
Alexander, 1980  A4 0.403 0.071 0.171 0.156 0.132 0.904 
Huntington et al., 1989 A5 0.334 -0.122 0.213 0.175 0.167 0.962 
Harrison & Bocock, 1981  A6 0.302 0.257 0.367 0.261 0.287 1.638 

Functions using OM 
Curtis & Post, 1964 B1 0.292 -0.199 0.263 0.171 0.217 1.044 
Federer et al., 1983  B2 0.098 -0.151 0.261 0.213 0.196 1.216 
Prevost, 2004 B3 0.131 -0.025 0.202 0.201 0.151 1.047 
Perie & Ouimet, 2008 B4 0.413 0.151 0.230 0.173 0.189 1.028 
Han et al., 2012 B5 0.403 -0.040 0.164 0.159 0.129 0.741 
Adams, 1973 B6 0.436 -0.184 0.236 0.149 0.202 0.657 
Post & Kwon, 2000 B7 0.438 0.123 0.194 0.149 0.156 0.939 
Tremblay et al., 2002 B8 0.432 -0.215 0.265 0.155 0.226 0.829 
Prevost, 2004 B9 0.435 -0.016 0.159 0.158 0.123 0.787 
Perie & Ouimet, 2008 B10 0.419 0.033 0.206 0.204 0.162 0.834 
Han et al., 2012 B11 0.436 -0.031 0.157 0.154 0.122 0.775 

Functions using OC and grain-size data 
Tomasella & Hodnett, 1989  C1 0.187 -0.090 0.205 0.184 0.165 0.800 
Kaur et al., 2002 C2 0.227 -0.246 0.371 0.278 0.288 1.166 
Hollis et al., 2012  C3  0.340 0.100 0.198 0.170 0.155 0.998 
Hollis et al., 2012  C4  0.372 -0.043 0.163 0.157 0.128 0.824 
Hollis et al., 2012  C5  0.346 0.022 0.160 0.159 0.125 0.884 

*Values in bold indicate functions performing better. 
 

 
Figure 3. Standard deviation of prediction error (SDPE2) 

vs. mean prediction error (MPE2) of the tested PTFs  
 

Besides the enumerated functions, other have 
also been tested (Bernoux et al., 1998; Leonaviciute, 
2000; Benites et al., 2007; Brahim et al., 2012), but 
the results have been very weak, most probably due 
to the databases used in derivation (the functions of 
Benites et al., 2007 and Bernoux et al., 1998 have 
been elaborated for the Amazonian area, while the 
database used by Leonavicuite (2000) includes very 
high values of bulk density, up to 2.1). 

Data stratification, recommended by Heuscher 
et al., (2005) or Hollis et al., (2012) does not help 

improving the results. For example in the case of the 
PTFs of Manrique & Jones (1991) and Alexander 
(1980), applying them only to forest soils led to a 
decrease in the MPE values (from 0.01 to 0.008, 
from -0.013 to 0.008, from 0.071 to 0.026) but also 
to a decrease in R2 (from 0.376 to 0.346, from 0.403 
to 0.399) and an increase in RMSE (0.17 to 0.26, 
0.16 to 0.22, 0.15 to 0.21, 0.17 to 0.24). 

 
4. CONCLUSIONS 
 
In conclusion, the validation of published 

PTFs with the help of a Romanian dataset has shown 
that these functions give different results. Many of 
the PTFs derived by different authors cannot be 
applied to the Romanian territory. 

These functions have obtained poor scores 
due most probably to their derivation for small areas 
or from small datasets. Also, some of the functions 
are limited through their mathematical expression at 
certain bulk density values, while others tend to 
underestimate at small OM contents. At the same 
time, OM only explains 37-39% of the bulk density 
variation, and soil texture has a small influence. 
With some exception, functions using OM or OC 
have had relatively similar performances. 
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Figure 4. Measured vs. predicted values of bulk density for the analyzed functions 
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The functions performing better are A2 of 
Manrique & Jones (1991), Alexander (1980), Han et 
al., (2012) and B9 of Prevost (2004). With good 
statistics for SDPE, RMSE or ME, these functions 
still do not obtain R2 values higher than 0.43. 
Although using besides OM grain-size data, the 
functions from group C did not have better 
performances.  

It is clear in this situation that when 
estimating bulk density, one should take carefully 
into account the method of PTF derivation, the 
dataset used, and the performance of the 
mathematical expression used. Also, in the case of 
large datasets such as the one used, a further 
stratification based on soil classes or types might 
improve the results. 
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