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Abstract: Investigations of soil failures are subjects touching both geology and engineering. These 
investigations call the joint efforts of engineering geologists and geotechnical engineers. From the studies 
of field case records at least two types of soil failures have been distinguished, namely "shear failure" 
which is main concentration of the current research and "liquefaction failure". Shear failures along shear 
planes occur when the shear stress along the sliding surfaces exceed the effective shear strength. These 
slides have been referred to as landslide. An expert system based on artificial neural network has been 
developed for use in the stability evaluation of slopes under various geological conditions and 
engineering requirements. The Artificial neural network model of this research uses slope characteristics 
as input and leads to the output in form of the probability of failure and factor of safety. It can be stated 
that the trained neural networks are capable of predicting the stability of slopes and safety factor of 
landslide hazard in study area with an acceptable level of confidence. Landslide hazard analysis and 
mapping can provide useful information for catastrophic loss reduction, and assist in the development of 
guidelines for sustainable land use planning. The analysis is used to identify the factors that are related to 
landslides and to predict the landslide hazard in the future based on such a relationship. 
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1. INTRODUCTION 
 
From the studies of field case records at least 

two types of soil failures have been distinguished, 
namely "shear failure" and "liquefaction failure". To 
indicate the characteristics of shear failure and 
liquefaction failure, the words "landslide" and "flow 
slide" have been used, respectively. To distinguish 
these two types of failures it should be noted, that 
shear failures along shear planes occur when the 
average shear stress along the sliding or slip surfaces 
tends to exceed the effective shear strength. 
Liquefaction failures occur as a consequence of 
large excess pore pressure build up under mainly 
undrained conditions (Roscoe, 1967).  

Sliding of masses of soil, primarily resulting 
from the shear failures along shear planes forming 
the boundaries of the moving masses, may take 
place during a very long time. Some of these slips 
started more than ten thousands years ago and are 

still continuing (Christiansen, 1983). Table 1 shows 
the cause and failure time of some typical cases. 

A landslide or landslip is a geological 
phenomenon which includes a wide range of ground 
movement, such as rock falls, deep failure of slopes 
and shallow debris flows, which can occur in 
offshore, coastal and onshore environments (Bishop 
et al., 1969). Although the action of gravity is the 
primary driving force for a landslide to occur, there 
are other contributing factors affecting the original 
slope stability. Typically, pre-conditional factors 
build up specific subsurface conditions that make the 
area/slope prone to failure, whereas the actual 
landslide often requires a trigger before being 
released (Bishop, 1955). 

Landslides occur when the stability of a slope 
changes from a stable to an unstable condition. A 
change in the stability of a slope can be caused by a 
number of factors, acting together or alone (Duncan, 
1996).  
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Table. 1. The cause and failure time for different cases of failures. 
  

Problem Mechanism Cause Failure time 
Denholm Saskatchewan 

Landslide shear failure erosion at toe 12000 years 

Coastal flow slides in Zeeland liquefaction failure erosion, tidal current, geometry 
change 

about 1.5 
minutes 

Fort Peck dam flow slide liquefaction failure increase of total load during 
construction 

about 3 
minutes 

The flow slide of 1966 at 
Aberfan liquefaction failure additional load, change of 

geometry 
about 2.5 

hours 
Lower San Fernando dam flow 

slide liquefaction failure Earthquake about 2 
minutes 

Flow slides in model 
experiments liquefaction failure steady increase of pore 

pressure 
about 40 
seconds 

Quick clay flow slide at Furre liquefaction failure increased pore pressure about 2 
minutes 

Quick clay flow slide at 
Baastad liquefaction failure stream erosion, leaching about 1  

minute 
 

From table 1 it can be seen, that natural causes 
of landslides include: groundwater (pore-water) 
pressure acting to destabilize the slope, loss or 
absence of vertical vegetative structure, soil 
nutrients, and soil structure (e.g. after a wildfire), 
erosion of the toe of a slope by rivers or ocean 
waves, weakening of a slope through saturation by 
snowmelt, glaciers melting, or heavy rains, 
earthquakes adding loads to barely-stable slopes, 
earthquake-caused liquefaction destabilizing slopes 
and volcanic eruptions (Eckersley, 1990). Also 
landslides are aggravated by human activities such 
as deforestation, cultivation and construction, which 

destabilize the already fragile slopes, vibrations from 
machinery or traffic, blasting and earthwork which 
alters the shape of a slope, or which imposes new 
loads on an existing slope (Gokceoglu & Sezer, 
2009; Sassa et al., 2004). However, there are a 
number of external or internal causes which may be 
operating either to reduce the shearing resistance or 
to increase the shearing stress. There are also causes 
affecting simultaneously both terms of the factor of 
safety ratio. Table 2 shows brief lists of landslide 
casual factors (Varnes, 1978; Cruden & Varnes, 
1996). 

 
Table 2. A brief list of landslide casual factors. 

 

Ground Conditions Geomorphological 
Processes Physical Processes Man-Made Processes 

(1) Plastic weak material 
(2) sensitive material 
(3) Collapsible material 
(4) weathered material 
(5) Sheared material 
(6) Jointed of fissured 
material 
(7) Contrast in 
permeability and its 
effects on ground water 
contrast in stiffness 
(stiff, dense material 
over plastic material) 

(1) Tectonic uplift 
(2) Volcanic uplift 
(3) Glacial rebound 
(4) Fluvial erosion of 
the slope toe 
(5) Wave erosion of the 
slope toe 
(6) Glacial erosion of 
the slope toe 
(7) Erosion of the lateral 
margins 
(8) Subterranean erosion 
(solution, piping) 
(9) Deposition loading 
of the slope or its crest 
(10) Vegetation removal 
(by erosion, forest fire, 
drought) 

(1) Tectonic uplift 
(2) Volcanic uplift 
(3) Glacial rebound 
(4) Fluvial erosion of 
the slope toe 
(5) Wave erosion of the 
slope toe 
(6) Glacial erosion of 
the slope toe 
(7) Erosion of the lateral 
margins 
(8) Subterranean erosion 
(solution, piping) 
(9) Deposition loading 
of the slope or its crest 
(10) Vegetation removal 
(by erosion, forest fire, 
drought) 

(1)Excavation of the slope or its 
toe 
(2)Loading of the slope or its 
crest 
(3)Defective maintenance of 
drainage systems 
(4)Irrigation 
(5)Water leakage from services 
(water supplies, sewers, storm 
water drains) 
(6)Vegetation removal 
(7)Mining and quarrying (open 
pits or underground galleries) 
(8)Creation of dumps of very 
loose waste 
(9)Artificial vibration 
(including traffic, pile driving, 
heavy machinery) 
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Forgoing discussions indicate that there is a big 
complexity involved in the analysis of landslide 
failures. In the following, artificial neural network 
will be used to overcome this complexity. Recently, 
extensive studies have been done on application of 
ANN to geotechnical engineering problems; (Chan et 
al., 1995, Lees, 1996, Teh et al., 1997, Sivakugan et 
al., 1998, Ellis et al., 1995). Sidarta & Ghaboussi 
(1998) employed an ANN model within a finite 
element analysis to extract the geometrical 
constitutive behavior from non-uniform material tests. 
Penumadu & Jean-Lou (1997) used neural networks 
for representing the behavior of sand and clay soils. 
Sidarta & Ghaboussi (1998) used neural networks to 
model both the drained and undrained behavior of 
sandy soil subjected to triaxial compression-type 
testing. Penumadu & Zhao (1999) also used ANNs to 
model the stress-strain and volume change behaviour 
of sand and gravel under drained triaxial compression 
test conditions. Zhu et al. (1998a and 1998b) used 
neural networks for modeling the shearing behavior 
of a fine-grained residual soil, dune sand and 
Hawaiian volcanic soil. 

Simplified methods in assessing slope stability 
are popular among practicing engineers. These 
procedures are very useful at the preliminary design 
stages to assess landslide risk. If the landslide risk is 
high, then a detailed analysis can be carried out to 
obtain the stability of slope, which is necessary in 
subsequent design of structures in study area (Hornik, 
1991). In more details improving the reliability of 
landslide risk, may lead to cost reduction and helps to 
operation planning (Remondo et al., 2005).  

Data collection in explored soils is important 
for assessing of landslide as well as estimation of 
strata thickness, soil type, groundwater table and etc 
(Champati ray et al., 2007). It is also time 
consuming and often expensive process, which 
includes many field and laboratory experiments 
(Ayalew et al., 2004). Therefore reliable prediction 
of landslide asks for carefully planning of sampling, 
testing and exploration methods (Cal, 1995).  

Successful prediction of slope stability in soil 
deposit using the existing data leads to improve the 
reliability of data which will be used for 
construction in future (Saha et al., 2005). Such 
approach is presented in the following text that 
generally comprises presentation of the study area, 
description and selection of the neural model, its 
training, improving, and developing of final model 
used for prediction of slope stability by specific 
ANN.  

To this end, first the study area and its 
geological setting will be considered, taking into 
account the experimental and laboratory tests 
performed in the landslide regions. Then, by 
considering the advantages of these data, the structure 
of the ANN model is completed. In the next step, the 
ANN model will be adapted by training process. It 
follows by validation process in which the generality 
of the models for future prediction is increased. At the 
final stage, the predictive capability of the ANN 
model is controlled by comparing the calculated 
results with corresponding actual slope conditions 
failure. This is followed by the concluding remarks of 
the present research work.  
 

2. STUDY AREA AND GEOLOGICAL 
SETTING 

 
The study area is located in central part of 

Mazandaran province in north of Iran. The 
geomorphology of this region has been formed 
under the impact of neighborhood with the Caspian 
Sea heights, local climate, geology and earth 
structuring. The northern foothills of this mountain 
range, overlooking the Caspian depression, are 
covered by forest and have been cut by many rivers 
(Asadian et al., 2010). The authors focused on 3 
zones in this study area named Flourd, Hollar and 
Noabad. The Flourd site is located at Savadkouh 
Azad University grounds in the rural surroundings of 
Savadkouh, 5 Km from Pol-Sefid city in the 
northern part of Iran (Fig. 1). 

 

 
Hollar

 
Figure 1. Geographical map of Flourd landslide, Northern part of Iran. 

Flourd Noabad 
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(a) Extent of damage. (b)Tilting trees and visible roots. 

Figure 2. A view of the active slide at the Flourd site. 
 

The elevation of the site is 350 m above sea 
level. Like the surrounding lands, a forest vegetation 
cover and a mountainous morphology is dominant. 
Figure 2 shows a scarp of the landslide along with the 
tilted trees, indicating the extent of the slide damage. 
The area investigated consists of an old slide mass 
which experienced several slides during the quaternary 
period, associated with saturated conditions and 
dynamic loading caused by severe earthquakes. Peat, 
lignite remains, and coal remains from Alder trees 
were revealed from boreholes at the site. These 
findings indicate that the site had several previous 
slides and, generally similar geographical conditions 
existed in the past. 

Subsurface site investigations indicate that no 
stable underground water table exists. However, 
underground seepage flow seems to exist within the 
silt and gravel lenses which exist in the stratification. 
Bore pits dug in the area showed that seepage water 
exists at the depth of three to five meters below 
ground surface. Water level was observed in several 
observation wells at depths ranging from 10 to 15 
meters, at the interface between the slide mass and 
the underlying bedrock. 

Site investigation revealed that part of the 
surface water run-off from adjacent areas to the 
active landslide mass, leaks into the sliding area. 
This trapped surface water eventually infiltrates into 
the ground and accumulates with the existing rainfall 
induced seepage from surface water absorption 
within the sliding mass. The slide mass is, therefore, 
considered to be saturated at the time of landslide 
activation (Havenith et al., 2006). 

One of the important factors affecting a 
landslide risk assessment is the engineering 
geological parameters and characteristics of the site. 
In this context, the parameters considered usually 
consist of site geometry, failure mechanisms 
observed, effect of slide on existing structures, 

assessment of the causes and the risks for future 
occurrence of slides, classification of the landslide, 
and in-situ soil conditions. All these have been 
studied in Flourd landslide and have revealed the high 
landslide hazard risk of the site. Figure 3 shows 
geological map of Flourd landslide and Pol-Sefid 
(Choobbasti et al., 2009a). 

As previously mentioned, the slide mass at the 
university site is part of a sliding slope facing the south 
eastern direction. The sliding mass extends to the 
calcareous sediments on the south west side, and 
finishes off to the river at its toe. Steady state seepage 
conditions prevail below the ground surface down to 
the underlying bedrock. A volume of 15 to 20 liters per 
second were predicted for the seepage flows. The slide 
mass does not have any visible surface flow paths and 
the existing paths are rather scattered in the whole 
region. From the lateral scarps, silty clay along with 
boulders is visible. The slide initiated at the point 
where little vegetation existed. Surface water from 
rainfalls directly penetrated the underlying soils at 
these surfaces and reached the shear zone of the sliding 
mass. The upper surface of the slide has a concave 
form which gathers rainfall water into the sliding mass. 
Therefore, each period of heavy rainfall causes a 
reactivation of the slides. Tilting of the existing trees 
indicates that a progressive and creep type of active 
slide is dominant in the area. The effect of landslide on 
existing geotechnical structures in the area was 
generally in the form of slides in the slopes, creep, tilt 
and structural cracks in the soil retaining structures. 

On January, 2004 a large landslide on a layer of 
mainly clayey soil took place at Hollar (Fig. 1), in 
Mazandaran, northern part of Iran. Landslides in the 
province of Mazandaran constitute a major threat to 
both lives and property. The falling and sliding of some 
of Hollar trenches (Fig. 4) is a research subject that 
attracted a group of geological investigators for a time 
about at least ten years.  
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Figure 3. Geological map of Flourd landslide and Pol-Sefid. 

 

 
(a) Extent of damage on infrastructures.                                      (b) Extent of damage on properties. 

Figure 4. A view of the active slide at the Hollar site. 
 

Table.3. Physical and mechanical characteristics of soils. 
 

K (m/day) ϕ°  ψ °  C (KN/m2) υ  satγ  
(KN/m3)

E (KN/m2) dryγ  
(KN/m3) 

Soil type 

0.0001 20 0.0 5 0.35 11.5 800 7 peat 
0.0001 24 0.0 2 0.33 17 2000 15 clay 
0.01 25 0.0 4 0.33 17.5 20000 16 Stone clay 

 
The investigation shows that three kinds of 

materials dominated the site. The lower one is stone 
clay over the whole area. The upper one is clay with 
adenitis fragment. The average thickness of clay 
layer in this area is investigated about 25-30 m. 

Another material is found as alluvium, which is the 
minority of the material type. The corresponding 
values being shown in the table 3. 

Rainfall is one of the main factors governing 
the landslide occurring in the Hollar region. Average 
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annual rainfall between 800-1000 (mm) has been 
recorded in this region. As a result of this regional 
meteorological event, flooding and landslide began to 
occur on January 2004. In fact, these changes in 
environmental conditions caused abnormally high 
groundwater levels and subsequently the initiation of 
the slide. 

As mentioned above, Noabad landslide area is 
also located in north of Iran, Mazandaran. The 
annual mean temperature of the terrain is 12.5 °c and 
the annual mean precipitation is estimated 800 
(mm). The area climate from Dommartan method is 
humid. From geological point of view, the most of 
geologic units are related to Senozoaek era that for 
reason of the existence of marl, shiel silty stone are 
susceptible to landslide occurrence. 

Piezometer tubes were installed into the ground 
to measure changes in water level over a period of 
time. Ground investigations also include the in-situ 
and laboratory tests, area photographs, study of 
geological maps and memoirs to indicate probable 
soil conditions, visiting and observing the slope, 
previous instability which happened and plotting 
topography plan (Fig. 5) (Corominas et al., 2005). 
 

3. ANN MODELING, ANALYSIS, 
RESULTS AND DISCUSSIONS 
 

In problems dealing with different variables 
and with different ranges and dimensions, the 
application of several networks may be a good 
choice. Neural networks are efficient tools when 
used as pattern classifiers, it is important to properly 
select the input variables for training (learning) 
process of ANNs, as the way how to determine 
relationships between input and output variables 
(Riedmiller & Braun, 1993). A set of known input 
and output values is named as input-output pair. All 
such pairs are usually divided into three sets. The 

first and second are described as training and 
validation sets which are used to determine the 
connection weights or weighting coefficients (like in 
interpolation methods), usually marked as  

( ). 
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Also the training and validation sets are used 
during the training process and the test set is used 
for obtaining the estimates (Rumelhart et al., 1986). 
All ANN models were trained using the automated 
regularization algorithm to improve generalization. 
The validation set served as a constraint on training, 
in order to minimize over fitting (Lee et al., 2007). 
The ANN models for this study were developed, 
trained, validated and tested within STATISTICA 
computational environment utilizing the neural 
network toolbox, and the accuracy of the ANN 
model was evaluated using Root Mean Squared 
Error (RMSE) between measured and predicted 
values and pressed as: 
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Where sz  is observed value, is predicted value, n 
is number of samples. 

0z

The authors used two ANN models to apply 
landslide analysis. The first one was able to predict 
the landslide hazard probability or stability of slopes 
and the second one was used for prediction of safety 
factor in slopes. In the First ANN model, coefficient 
of cohesion (C), angle of slope (α), angle of internal 
friction (φ ), distance from slope edge (x) (Figure 6), 
unit weight (γ ) and slope elevation (H) are input 
variables. 

(a) Topography map of Noabad.                                             (b) Extent of landslide damage. 
Figure 5. A view of the active slide at the Noabad site. 

Instability 
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In the second proposed ANN model for 
prediction of safety factor, several important 
parameters, including effective stress ( 'σ ), 
coefficient of cohesion (C), angle of slope (α), angle 
of internal friction (φ ), distance from slope edge, 
slope elevation (H) and length of slope (L) were 
used as the input parameters whilst the factor of 
safety was the output parameter. It should be noted 
that seismic parameters are one of the important 
parameters affecting on landslide hazard and in this 
research vertical and horizontal value of seismic 
parameters assumed constant. It is also important to 
note that, in fact, several ANN models using element 
tests data were constituted for generating the 
models. Among them, the model with better 
performance (greater coefficient of determination 
and smaller RMSE) for validation data set was then 
chosen. However, the ANN models were developed 
with the best performance concurrently for training 
and testing of data sets. For optimization of the 
developed ANN models, three different 
combinations of input parameters were considered 
as shown in tables 4 and 5. 

It can be extracted from tables 4 and 5 that, 
regarding to RMSE value obtained by different 
models, first model is the best model chosen which 
was applied within current study.  

These factors are based on exploration of 
typical, large scale slopes that have the potential to 
be failed and on statistical analyses throughout the 
central part of Mazandaran. In this study, all of these 
data had to be processed using standard adjustment 
as input variables in the ANN model. As for the 
qualitative indices, it is better to describe the state of 
a slope by means of values of 1 and 0, which express 
stable and unstable conditions, respectively. 

In current research, regarding the available data 
and their quality, a neural network program written in 
back propagation algorithm, is used. Six and seven 
soil parameters are selected as input in different 
models, and these parameters are divided into data 
sets. Each data sets is introduced to the network 
individually, and performance of the network on the 
assessment of slope stability is investigated. 

Back propagation is selected as the training 
algorithm of neural network (Table 6). It is the best 
known training algorithm for multilayer perceptrons 
neural networks, and still one of the most useful and 
later improved in some advanced forms like RProp. 
Back propagation algorithm means that network 
training includes determination of the difference 
between true and wanted network response, i.e. 
means calculation of error that is backed in the 
neural network for obtaining optimal training.  

 

 
Figure 6. Sample selection and X distance from edge. 

 
 

Table 4. Different combinations of input parameters for prediction of landslide hazard. 
 

Model number 1 2 3 
Input C , α , φ , x , γ ,H  H , x , γ  , 'σ  ,σ  C , α , 'σ  ,σ ,  φ  
RMSE 9% 12% 13% 

 
Table . 5. Different combinations of input parameters for prediction of safety factor. 

 
Model number 1 2 3 
Input 'σ ,C , α , φ , x , H,L  H , x , γ  , 'σ  ,σ , α  C , α , 'σ  ,σ ,  φ , H 
RMSE 11% 16% 14% 

 

X

LInstable 
Samples H

Stable 
Samples 

H
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It has lower memory requirements than most 
algorithms, and usually reaches an acceptable 
estimation error quite quickly (in relative low 
number of iterations or epochs). 

In the selection of learning / training 
algorithm number of neurons in different layers 
(input, hidden, output), number of epochs, learning 
rate and the momentum have been applied instant 
(Choobbasti et al., 2009b). The RMSE of the 
different neurons in hidden layer is plotted in Fig. 7. 

As shown in table 6, the available data set is 
divided into three sets, namely training, validation, 
and test sets, based on random selection. This way 
we can examine the validity of the model in a more 

comprehensive manner. In ANN forecasting models, 
60% of the records are selected as training, 30% are 
taken for test in final evaluation, and the remaining 
10% used for validation or monitoring the 
performance of the model during the training phase 
(Table 7). 

In each epoch, the entire training set is fed 
through the network, and used to adjust the network 
weights. Numbers of epochs are specified at the 
start, but also alternative stopping criterion may also 
be specified, and if over-trained network occurs the 
best network discovered during training can be 
retrieved. In this analysis, the number of epochs 
varied between 300 and 500.  

 
Table. 6. Results of research in order to Learning / training algorithm selection for prediction of landslide hazard. 

 

 
 

(a) For prediction of landslide hazard.                             (b) For prediction of safety factor. 
Figure 7. The RMSE of the different neurons in hidden layer.  

 
 

Table 7. Performance of different sets of data used in ANN. 
 

Case study Number of data 
(I/O data pairs) ANN used for Training set Validation set Testing set 

Flourd 883 Prediction of 
landslide hazard 503 95 285 

Flourd 883 Prediction of 
Safety factor 503 95 285 

Hollar 762 Prediction of 
landslide hazard 488 79 195 

Hollar 762 Prediction of 
Safety factor 488 79 195 

Noabad 1037 Prediction of 
landslide hazard 600 122 315 

Noabad 1037 Prediction of 
Safety factor 600 122 315 

Supervised 
Learning/ training 

algorithms 
Back propagation 

Conjugate 
Gradient 
Descent 

Levenberg-
Marquardt 

Quick 
Propagation 

Delta 
-bar- 
Delta 

7.2 10.6 11.3 9.9 8.6 
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A batch mode feed-forward Multilayer 
Perceptron (MLP) with back-propagation learning 
rules was used to create the desired ANN model an 
adaptive learning rate was employed to keep the 
learning step size as large as possible while the 
training is stable. According to a universal 
approximation theorem, demonstrated concurrently 
by several researchers for traditional MLP, a single 
hidden layer network is sufficient to uniformly 
approximate any continuous and nonlinear function. 
The model architecture was built with one hidden 
layer, a learning rate of 0.95 and a momentum term 
of 0.9 updated with a coefficient of 0.95 after each 
epoch. The studies performed here, were started with 
one hidden neurons to reach the optimum number of 
hidden neurons and desired precision. Input vector 
contains soil initial parameters and output (the target 
vector) is stability and safety factor of slope. In 
order to obtain a more efficient training process, the 
input and target were standardized to have zero 
mean and unity standard deviation. Cross-validation 
or employing another set of data for more testing can 
be used to increase the generality of the models for 
future predictions.  

After determination of the factors affecting 
slope stability, a three-layer ANN with six input 
nodes, four neuron in hidden layer, one output node 
(stability of slope) and another three-layer ANN 
with seven input nodes, eight neuron in hidden layer 
and one output node (factor of safety) were 
constructed in this research.  

The predictive capability of the proposed 
neural network has been assessed by comparing the 
calculated probability of failure with the actual slope 

conditions. Table 8 tabulated some random selected 
samples, showing the actual modes of failure and 
prediction of ANN. The system uses the slope 
characteristics and material property data and 
calculates the landslide hazard probability and the 
factor of safety for each slip. 

For the above discussion, it is clear that, first 
the learning or training dataset is used to determine 
the weights. Then a second validation set is used to 
monitor the performance of the model during the 
training phase and to minimize over fitting, and 
finally the test sets was used to evaluate the trained 
neural network. It is evident from test data sets that 
the developed ANN model can be applied 
successfully to predict the stability and factor of 
safety value of slope.  

The samples are divided in to 3 groups 
(training, validation and testing). As shown in 
Figure8 samples of testing group are correlated in 
terms of sample number and the accuracy 
(comparison between prediction and real data) of 
each sample is shown. 

In these figures, terms of the ratio of actual 
data per predicted value (in Y-axis) versus sample 
number (in X-axis) for different test samples are 
presented. It is clear that if the predicted and the true 
values were the same, such point lie on line y=1. It is 
clear that the average correlation of the ANN model 
and true data in all cases is over 90%. So it can be 
concluded, that the prediction of slope stability and 
its factor of safety agrees with actual landslide data 
obtained from bishop’s method or finite element 
method. 

 
 

Table. 8. Selected case studies showing the actual modes of failure and prediction of ANN. 
 

Sample C 
(kpa) 

L 
(m) 

α  
( ) φ  X 

(m)

γ  

( 3
KN
m

) 

'σ  

(
2

KN
m

) 
H 

(m) 

Stability 
(Actual 
condition)

FOS 
(Actual 

condition) 

Stability 
(Prediction
of ANN) 

FOS 
(Prediction 

of ANN) 

1-Flourd 14 83 31 23 1 19.2 5.46 27 0 0.78 0 0.72 
2-Flourd 14 83 31 23 3 19.2 16.94 27 0 0.81 0 0.78 
3-Flourd 14 83 31 23 5 19.2 28.24 27 0 0.97 0 0.89 
4-Flourd 14 83 31 23 7 19.2 39.53 27 1 1.04 1 1.13 
5-Flourd 14 83 31 23 9 19.2 50.83 27 1 1.10 1 1.06 
6-Hollar 27.3 75 29 31 1 18.7 4.93 32 0 0.88 0 0.94 
7-Hollar 27.3 75 29 31 3 18.7 14.80 32 1 1.07 1 1.13 
8-Hollar 27.3 75 29 31 5 18.7 24.66 32 1 1.12 1 1.17 
9-Hollar 27.3 75 29 31 7 18.7 34.53 32 1 1.20 1 1.12 

10-Hollar 27.3 75 29 31 9 18.7 44.40 32 1 1.25 1 1.31 
11-Noabad 10 96 32 28 1 20.1 6.43 24 0 0.66 0 0.72 
12-Noabad 10 96 32 28 3 20.1 19.30 24 0 0.71 0 0.73 
13-Noabad 10 96 32 28 5 20.1 32.18 24 0 0.90 0 0.97 
14-Noabad 10 96 32 28 7 20.1 45.05 24 0 0.97 0 0.89 
15-Noabad 10 96 32 28 9 20.1 57.92 24 1 1.02 1 1.09 
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Figure 8. Errors involved in ANN for prediction of landslide hazard. 
 

4. CONCLUSION 
 

In this paper, three cases of slope failures 
leading to landslide in northern part of Iran have 
been investigated. This investigation revealed the 
complexity involved in the analysis of landslide 
phenomenon. 

To this end, first a complementary study 
involving field and laboratory tests, detailed 
geological survey of the site and its surroundings, 
using available geological maps, air photos and 
published literature has been performed. Then, an 
artificial neural network model has been developed 
to analyze these three cases of landslide, taking into 
account the complexity involved. In this ANN 
model, a back-propagation learning algorithm was 
used for the training process. The input data for 
stability estimation consist of values of geotechnical 
and geometrical input parameters. Finally, the 
results produced by the proposed artificial neural 
network model compared well with the determined 
factor of safety decision obtained by simplified 
methods. The ANN model developed in this study is 
believed to provide a viable landslide assessment 
tool that assist geotechnical engineers in making an 
accurate and realistic predictions. So it can be 
concluded, that the prediction of slope stability and 
its factor of safety agrees with actual landslide data 
obtained from bishop’s method or finite element 
method. 
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