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Abstract: As a result of hard coal mining, specific areas of subsidence basins, which are often waterlogged, 
were created in the Czech part of the Upper Silesian Coal District. These areas may not have a high 
ecological value or, on the contrary, promising biotopes may arise here under suitable conditions, which 
should be our goal. As part of this work, the above-ground vegetation, and the soil seed bank (using the 
cultivation method) were investigated. The concentration of the risk elements chromium and arsenic, which 
are usually increased in mining areas, was determined by neutron activation analysis. Other environmental 
variables that can affect both the vegetation and the soil seed bank of subsidence basins (fine earth, slope, 
biotopes, and their representation in the vicinity) were also determined. Using multivariate DCA analysis, a 
statistically significant influence of chromium concentration and other variables on above-ground 
vegetation, characterized by the occurrence of many metallophytes and their high coverage, was found. The 
soil seed bank, which can impact the further development of vegetation, is mainly influenced by forest and 
wetland biotopes and the representation of areas covered by tailings in the vicinity of sampling sites. It is 
evident that there are species capable of resisting or accumulating chromium and arsenic pollution in both 
the above-ground vegetation and the soil seed bank, which can lead to the gradual rehabilitation of 
subsidence basins. This research can lead to a better understanding of the development of subsidence basins 
to increase their future ecological values. 
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1. INTRODUCTION 
 
Czech parts of the Upper Silesian Coal Basin 

(Ostrava – Karviná Coal District) is significantly 
affected by hard coal mining and metallurgical industry. 
The Karviná coalfield is characterized by a large 
thickness of coal seams, which is reflected in the 
thickness of subsidence basins, reaching a depth up to 
25 m. In floodplains of rivers and in areas with high 
groundwater levels, these subsidence basins are flooded. 
Results of intense anthropogenic disturbance are not 
only natural terrain destruction and contamination of 
environment, but also creation of very promising 
biotopes in terms of landscape productivity and 
biodiversity. 

The gradual development of biocenoses on the 

mine heaps and subsidence basins that have not been 
reclaimed has the character of a primary succession. It 
is closely related to the physicochemical properties of 
the tailing’s substrate, the method of forming the heap 
and the available sources of diaspores. Mostly 
carboniferous tailings mined in Ostrava – Karviná 
Coal District have relatively favourable 
physicochemical properties with sufficient nutrients, 
good porosity, and a suitable water regime due to the 
existence of a condensation layer (Štýs, 1981). The 
content of sulphides (pyrite, rarely arsenopyrite) can 
be problematic, since they are oxidized and with 
seeping water forms the sulphuric acid which lowers 
the pH and leads to leaching of ecotoxic elements 
(Makowska et al., 2019; Pesek et al., 2005).  

In terms of vegetation development prediction, in 
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addition to the state of above-ground vegetation, it is 
necessary to monitor the state of the soil seed bank as a 
supply of viable, non-germinated seeds in each location 
(Baskin & Baskin, 2014; Fenner & Thompson, 
2005). Soil seed bank analysis is an important source of 
data in the study of succession in disturbance-affected 
areas and is extremely important in landscape restoration 
(Prach et al., 2017; Prach & Walker, 2019; 
Řehounková et al., 2018).  

The development of vegetation in anthropogenic 
habitats is significantly influenced by environmental 
gradients, where they are very frequent and diverse. 
Significant gradients include environmental humidity, 
diaspore sources, their distances, and stress factors 
(Prach et al., 2014; Prach & Hobbs, 2008). The main 
stress factors that affect species composition of plants 
and its development in the monitored area include 
presence of heavy metals and other risk elements in the 
substrate, or occurrence of invasive plants. In terms of 
risk elements, we focused mainly on the content of 
chromium and arsenic, which occurs in the substrate of 
the monitored subsidence basins above the limit 
concentration. 

Chromium occurs naturally in form of FeCr2O4, 
primarily in ultrabasic rocks and serpentinites together 
with Pb, Mg and Al (Katz & Salem, 1994). It enters 
the environment mainly through anthropogenic activities 
such as metallurgical production of stainless steel, 
galvanic industry, catalytic production, production of 
refractory materials and often in form of dust from 
roads, cooling towers and others (Babula et al., 2008; 
Oliveira, 2012; Shtiza et al., 2008). It occurs mainly 
in trivalent form Cr (III), hexavalent form Cr (VI). 
Hexavalent chromium is very toxic to plants (Shanker 
et al., 2005), animals and humans (WHO 1988) due to 
its high oxidation potential, solubility, and mobility 
among the cell membranes. Trivalent chromium in form 
of oxides, hydroxides and sulphates binds to organic soil 
compounds, making it less mobile and toxic (Babula et 
al., 2008; Gupta et al., 2022; Oliveira, 2012). In low 
concentrations, it acts similarly to an essential element 
and supports plant growth (Peralta-Videa et al., 2009), 
at higher concentrations, however, it can stop growth 
(Srivastava et al., 2021). However, in the case of high 
oxygen concentration or higher manganese content in 
soil, Cr (III) may oxidize to Cr (VI) (Peralta-Videa et 
al., 2009). Thus, it can be said that the availability and 
potential toxicity of chromium to living organisms 
depends on its oxidation number, soil type, precipitation 
in the area, ability of Cr to create organic complexes and 
its binding to colloidal structures (Losi et al., 1994; 
Zayed & Terry, 2003). Chromium uptake by plant 
roots is also affected by the presence of mycorrhizal 
fungi, which can increase it (Davies et al., 2002). In 
terms of Cr accumulation in tissues (shoot / root ratio), 

higher concentration is in plant roots (Maruthi Sridhar 
et al., 2010).  

Arsenic, in terms of rocks or soil types, most 
often occurs in localities with coal reserves (range 0.3 - 
35,000 mg / kg) (Smedley & Kinniburgh, 2002). On a 
European scale, As is also represented in common rock, 
forming minerals as sulphides, sulphates, oxides 
(especially Fe oxides), phosphates. Higher concentration 
is also found in igneous rocks (basalt), sedimentary 
rocks (limestones, sandstones) and metamorphic rocks 
(slates, phyllites) (Smedley & Kinniburgh, 2002). 
Arsenic is also widely used in industry (mining and 
subsequent processing activities, burning of fossil fuels) 
(Alderton et al., 2014; Angelovičová et al., 2015), 
from where it enters the environment, very often by 
atmospheric deposition. Arsenic is most often found in 
terrestrial ecosystems as pentavalent and trivalent forms. 
As (III) is typical for soils with anaerobic conditions 
(e.g., flooded), As (V) is the main state in aerobic soils. 
In aerobic soils, As is strongly absorbed by oxides / 
hydroxides of iron and aluminum, it is minimally 
present in the soil solution and its bioavailability is 
therefore relatively low, however it depends on other 
substrate properties like pH (Moschner et al., 2020). In 
flooded anaerobic soils, its bioavailability is higher 
(Zhao et al., 2010). The bioavailability of arsenate is 
also affected by the phosphate content. These two 
compounds can replace each other in chemical 
reactions. This biochemical competition controls the fate 
of As in the environment (Strawn, 2018; Tripathi et 
al., 2012; Zhao et al., 2010). However, in the reducing 
environment, different biochemical reactions of arsenic 
and an increase in its solubility and mobility occurs, 
which is not observed for phosphorus (Strawn, 2018). 

The plant accumulates As especially in roots and 
only very small amounts are transported to the shoots. 
With increasing As concentration in the soil, the As 
accumulation in terrestrial plant increases, but in case of 
submerged plants, accumulation of As may be high even 
at low As content in sediment, probably due to foliar 
uptake of As. The root-stem ratio is not clear in the case 
of As. Tolerant plants generally translocate As into 
aboveground biomass, in plants that do not tolerate 
increased concentration of As, accumulation in roots 
predominates, but this process has not yet been fully 
studied (Quaghebeur & Rengel, 2003; Zemanová et 
al., 2021). Arsenic toxicity in plants manifests itself as 
morphological, physiological, and biochemical changes 
(Abbas et al., 2018). However, arsenic is needed at low 
concentrations for the normal physiological and 
biochemical functioning of plants (Mirza et al., 2014).  

In this study, we aim to quantify the content of 
the risk elements of arsenic and chromium in soils of 
subsidence basins and to determine, using a multivariate 
analysis, whether these elements, together with the 
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environmental variables of slope, biotope, and their area 
representation in the vicinity of the sampling sites, have 
an impact on the overall distribution of plant species in 
the aboveground vegetation and soil seed bank.  
 

2. MATERIAL AND METHODS 
 
2.1. Study area 
 
The two monitored subsidence basins are in 

the Karviná region. U cesty (49.8129506N, 
18.4779606E), located in the north of the Horní 
Suchá municipality, is the endorheic subsidence 
basin of 7900 square meters and maximum depth of 
4.5 m with a western bank covered with tailings 
(Pierzchala, 2012). To determine the soil seed bank, 
vegetation, and analysis of elements (Figure 1) 
a total of fifteen sampling sites were defined here. 
Sampling sites 1 and 2 corresponds to a non-
reclaimed habitat without tree coverage, sampling 
sites 3-8 to a wetland habitat with herbaceous and 
shrub vegetation with local occurrence of trees and 
sampling sites 9-15 to a forest habitat. The second 
research area is the subsidence basin Kozinec 
located near the Doubrava municipality. It is an 
extensive basin (approx. 0.49 square kilometers), 

with the western part formed by the Karviná stream 
and the eastern by the endorheic Kozinec Lake, 
which is divided by the anthropogenically created 
peninsulas and partly subsidized by saline mine-
water. Fifteen sampling sites were defined here as 
well, locally focused on the northern part of the 
Karviná stream with a significant slope leading to 
the water body (Figure 1). Sampling sites 16-18 
corresponds here to ecotonal vegetation of the forest 
edge and forest-free areas, sites 19-21 have a 
wetland character and sites 22-30 are forests with 
significant synanthropisation as remains of 
settlement. 

 
2.2. Sampling and analysis 
 
The aboveground vegetation was monitored in 

2019-2021, three times a growing season according 
to Braun-Blanquet (Braun-Blanquet, 1964). Each 
relevé had a uniform shape and size – a square with 
an area of one hundred square meters and plant 
species and their abundance were determined within 
each square. On each basin, fifteen sampling sites 
were selected within the area of relevant 
phytosociological relevé for soil seed bank sampling, 
depending on the habitats and, in the case of Kozinec, 

 

 
Figure 1. Map of sampling localization 
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also slope. Soil samples for soil seed bank 
determination were taken from selected spots in the 
form of a mixed sample. In each selected area, five 
samples (5.3 cm deep and 5.3 in diameter) were taken 
by Kopecký cylinders at random from a 2 m diameter 
circle, which were then mixed. Thus, the total area of 
one composite sample was 88,247 cm2. The samples 
were taken twice a year - in spring and autumn - and 
the results of both samples were fused together for a 
complete view on the soil seed bank. Samples 19, 20, 
21 were subsequently combined due to their mutual 
proximity and connection to the same habitat. In the 
autumn of 2020, samples 3-8 were not taken for the 
cultivation method of soil seed bank analysis, due to 
increased precipitation leading to flooding of the area. 
For this reason, an average of seedling grown in prior 
sampling was added to the spring samples to 
approximate the data. The assessment of biodiversity 
and equitability of aboveground vegetation and soil 
seed bank was calculated using the Shannon-Wiener 
index (Shannon, 1948). 

Sample processing was performed according 
to Heerdt et al., (1996) - the mixed samples were 
sieved in the laboratory through a 0.2 mm sieve to 
separate even small seeds. The supernatant phase 
was then planted in pots with a substrate suitable for 
sowing. The pots were left in a convenient 
environment and watered regularly. Grown 
seedlings were identified and removed from the 
pots. To control possible seed contamination from 
substrate or different sources, one control pot was 
grown with substrate only. The numbers of 
cultivated seedlings were finally recalculated per m2 
according to the sampling area.  

Samples for NAA were taken according to the 
IAEA methodology (IAEA, 2004) as part of the soil 
seed bank collection. These samples were sieved in 
the laboratory through a 2 mm sieve to separate the 
fine soil, which was sent to the Institute for Nuclear 
Research (JINR) in Dubna (Russia) to the NAA. 
This method is based on neutron activation, which is 
designed to determine the chemical elements in a 
sample. The sample to be analysed is bombarded 
with neutrons in a nuclear reactor. Through nuclear 
reactions, stable nuclei are transformed into other, 
radioactive nuclei and gamma radiation is released 
and recorded. A different specific value of gamma 
radiation applies to each element. It is possible to 
distinguish individual elements and their 
concentration in the sample (Greenberg et al., 2011) 

Selected and assessed environmental variables 
which may affect state and properties of vegetation 
and soil seed bank of subsidence basins are: 

a. concentration of heavy metals As and Cr - 
determined by neutron activation analysis in the 

IBR-2 reactor FLNP at the Institute for Nuclear 
Research (JINR) in Dubno. These hazardous 
substances were evaluated according to the 
Methodological guideline of the Ministry of the 
Environment: Pollution indicators (MŽP 2013), for 
industrially used areas (based on RSL values for 
Industrial soils). 

b. slope – expressed as the presence/absence. 
c. percentage of soil particles smaller than 0.2 

mm as a main part of soil with ecotoxic elements 
content 

d. area up to 100 m - surrounding habitats 
(forest, non-forest, waterbody, tailings cover, and 
anthropogenic structures), important for seed 
distribution according to Prach and Hobbs (2008) – 
calculated in geoinformation system QGIS 
(QGIS.org., 2022). 

e. affiliation of individual sampling areas to 
forest, non-forest, and wetland habitats.  

We determined the impact of these 
environmental variables on vegetation in R Software 
(R Core Team, 2020) using the multivariate DCA 
method with the Vegan package (Oksanen et al., 
n.d.).  
 

3. RESULTS AND DISCUSSION 
 

3.1. Chromium and arsenic contamination 
 
Based on the NAA results of the neutron 

activation analysis, the risk elements were assessed 
according to the Methodological guideline: Pollution 
indicators (MŽP 2013). The values of indicators for 
As (limit 2.4 mg/kg) and Cr (limit 5.6 mg/kg) were 
exceeded at all monitored sampling sites. In the case 
of chromium, the values of indicators for Cr (VI) 
were used, as the NAA does not allow to determine 
the valence of the element. The NAA results are 
shown in Figure 2. 

The average chromium concentration as seen 
in Figure 2 at the U cesty site was 78.13 ± 23.5 
mg/kg with a maximum of 129 mg/kg at the tailings 
site. In the case of Kozinec, the Cr content reached 
79.47 ± 13.31 mg/kg with a maximum of 100 mg/kg 
in a wetland habitat with reeds. The average 
concentration of chromium in soils varies 
considerably depending on the type and texture of 
soil, the WHO reports an average concentration in 
the range of 14 - 17 mg/kg, but it can reach up to 
1000 mg/kg (World Health Organization. Regional 
Office for Europe, 2000). In the case of arsenic, the 
average concentration in the soil of the U cesty 
locality was 9.8 ± 4.4 mg/kg with a maximum of 
24.7 mg/kg at site 3 corresponding to the wetland on 
the tailings. In Kozinec, the average concentration of  
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Figure 2. Concentration of Cr and As in soil. Explanation: The dashed line represent limit according to 
Methodological guideline (MŽP 2013) 

 

As reached 8.9 ± 0.9 mg/kg with a maximum of 10.3 
mg/kg in a wetland with reeds. Bowell et al., (2013) 
states that in soils affected by mining activities, the 
arsenic concentration can reach values of 4 to 9000 
mg/kg. However, it must be added that in the case of 
arsenic, in the Czech Republic, due to geochemical 
conditions in the rock environment and intensive 
industrial activities, its higher natural concentrations 
are common. In the case of the Ostrava and Karviná 
regions, an increased concentration of As was 
recorded in the upper parts of the soil horizon, 
mainly due to atmospheric deposition (Sucharová & 
Suchara, 1998). 

 
3.2. Aboveground vegetation 
 
In total 115 plant species belonging to 43 

families were recorded in the aboveground vegetation 
of the subsidence basins, among which Asteraceae 
(15.7 %), Poaceae (10.4 %) and Rosaceae (9.6 %) 
families prevailed, which are generally the most 
common families within Europe (Večeřa et al., 2021). 
The diversity reaches an average value of 1.84 on the 
subsidence basins combined with a minimum of 0.78 
at Kozinec and a maximum of 2.86 U cesty. In post-
mining areas of Europe, the diversity of aboveground 
vegetation is in general medium or lower 
(Kondratenko et al., 2022), the diversity of plants is 
higher on more skeletal soils within Upper Silesia 
(Kompała-Bąba et al., 2019). This is the case of U 

cesty subsidence basin, with average H´ = 2.16 
(Kozinec – average H´ = 1.51). Also, the average 
equitability of plant communities is higher U cesty 
(0.74) than at Kozinec (0.68). Most of the vegetation 
of subsidence basins was determined as the initial 
communities very likely leading to these associations: 
Dauco carotae-Melilotion, Fragarion vescea, 
Phragmition australis, Tilio platyphylli-Acerion, 
Alnion incanae, Quercion roboris, Arrhenatherion 
elatioris or Aegopodion podagrariae. Among the 
important factors that can significantly affect the 
species composition and may block the succession is 
a dominance of expansive Calamagrostis epigejos, 
possible spread of invasive Reynoutria japonica and 
Solidago canadensis. Many of metallophytes were 
found among the identified plant species of the 
subsidence basins – e.g., Typha latifolia (Sasmaz et 
al., 2008), Agrostis stolonifera (Štofejová et al., 
2021), Reynoutria bohemica (Širka et al., 2016), 
Cirsium vulgare (Dökmeci & Adiloğlu, 2020), 
Juncus effusus (Syranidou et al., 2017), Lysimachia 
nummularia (Singh & Tripathi, 2007). These species 
were most diverse and with the highest coverage in 
the relevés of the area covered with tailings and the 
southern wetlands of the U cesty basin (samples 1-8). 
Of the metallophytes found here, Lysimachia 
nummularia had the highest coverage (50-75 % of the 
relevé) in the sampling site 3. Other high coverage 
(up to 50%) metallophytes species recorded were Poa 
pratensis, Calamagrostis epigejos and Juncus effusus. 
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The influence of most selected environmental 
variables can be determined from the ordination 
diagram via multivariate analysis of aboveground 
vegetation (Table 1). Except of As and NF_100m 
variables, the relation of the of aboveground 
vegetation scores on the selected variables is 
manifested. Strong relation (p <0.001) was 
manifested for the variables A_100m (including the 
highest correlation coefficient), F, F_100m and slope 
(Sl) at the threshold of significance 0.05. The data of 
the ordination diagram show that the first axis DCA1 

represents a combined gradient of nature-friendly 
habitats (forests, wetlands, forests up to 100m, water 
areas up to 100m) and captures 12.056% of the total 
variation in species composition. DCA2 then 
combines a gradient of strongly anthropically 
impacted habitats (anthropic areas up to 100m, 
tailings areas up to 100m, fine earth) and captures 
10.824% of the total variation in species composition. 
Both axes show a correlation with slope, non-forest 
vegetation and chromium concentration. 

Table 1. Variation and significance of multiple regression 

 Vegetation Soil seed bank 
Env. Var. r2 Pr(>r) r2 Pr(>r) 
Cr 0.2074 0.042 *   0.1166 0.210 
As 0.0131 0.786 0.0176 0.809 
A_100m 0.7466 0.001 *** 0.2942 0.017 * 
F_100m 0.6726 0.001 *** 0.2005 0.053 
WB_100m 0.3093 0.007 ** 0.0331 0.638 
OB_100m 0.2341 0.029 *   0.4574 0.002 ** 
NF_100m 0.1334 0.153     0.2766 0.012 * 
M_0.2 0.3603 0.009 ** 0.1007 0.257 
Sl 0.4541 0.001 *** 0.0897 0.313 
F 0.6818 0.001 *** 0.3798 0.001 *** 
NF 0.2763 0.009 ** 0.0378 0.620 
WL 0.2917 0.011 *   0.2973 0.010 ** 

Explanations: Environmental variables are: A_100m – anthropic structures coverage up to 100m, F_100m – forests coverage up to 
100m, WB_100m – waterbodies coverage up to 100m, OB_100m – coverage of areas covered with tailings up to 100 m, NF_100m – 
coverage of non-forest habitats up to 100 m, M_0.2 – percentage of soil particles < 0.2 mm, Sl – slope, F – affiliation to the forest 
habitat, NF – non-forest habitat, WL – wetland habitat; r2 – variation explained by the model of multiple regression, Pr(>r) – the 
significance of the multiple regression, where signif. codes are: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
Figure 3. DCA diagram of vegetation 
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Two clusters appeared in the ordination DCA 
diagram of vegetation analysis (Figure 3). Cluster AI 
is in the first quadrant. Even though the 
environmental variables chromium and arsenic have 
little or no effect on the data set, correlation to the 
plant species of this cluster is manifested. Several 
metallophytes with phytoremediation abilities are in 
this cluster, like Reynoutria bohemica (Širka et al., 
2016), Agrostis stolonifera (Štofejová et al., 2021 
Juncus effusus (Syranidou et al., 2017), Symphytum 
officinale (Du et al., 2019), Lysimachia nummularia 
(Singh & Tripathi, 2007), Eupatorium cannabinum 
(González et al., 2019), Erigeron annuus (Zhang et 
al., 2021), Calamagrostis epigejos (Ranđelović et 
al., 2018) and others. This part of the ordination 
diagram corresponds with wetlands and its ecotone 
habitats, areas covered with tailings and forest areas 
of U cesty basin. 

Cluster AII, which consists of pioneer and 
ruderal species in drier non-forest habitats is situated 
far from the centre of the ordination diagram. Sites 
covered with tailings are located on the ordination 
diagram between these two clusters. The species of 
the second quadrant of the ordination diagram do not 
form a compact cluster, however, synanthropic 
species with a connection to the presence of 
anthropogenic relief up to 100 m can be observed 
here, such as Duchesnea indica, Cornus sanguinea, 
Corylus avellana, Geum urbanum, Impatiens 
parviflora. Sampling sites of forest parts of the U 
cesty basin are in this part of diagram. Variables of 
forest habitat, representation of the forests up to 100 
m, slope, and content of the fine earth are in the third 
quadrant of the ordination diagram, to which 
common forest trees such as Fagus sylvatica, 
Carpinus betulus, Alnus incana, Acer platanoides 
are correlated to. Sciophytes Athyrium filix-femina, 
Urtica dioica, Galium aparine, Allium ursinum of 
the slopes bordering the Kozinec subsidence basin 
are in this part of diagram. There are also fruity 
shrubs of recultivation or urban plantings tied to 
more inclined positions. It may be a residue of the 
former vegetation of residential areas before the 
decline and subsequent flooding of the area.  

 
3.3. Soil seed bank 
 
In the soil seed bank assessed by the cultivation 

method, 1487 seedlings were identified, belonging to 
60 plant species and 24 families. The Asteraceae (27 
%) and Poaceae (15 %) families predominated, other 
families were represented in the range of 2 % to 5 %, 
which corresponds to aboveground vegetation as a 
reflection of previous succession (Thompson & 
Fenner, 2005). The species with the highest average 

density are synanthropic, mostly autochorous Urtica 
dioica (862 s/m2), Chenopodium album (132 s/m2) and 
Poa annua (105 s/m2). The diversity of the soil seed 
bank is usually lower to the aboveground vegetation 
(He et al., 2016; Kuht et al., 2016; Wang et al., 2021), 
also in the case of post-mining areas it does not exceed 
H´ value of 2.8 and equitability E value of 0.7 
(Balestrin et al., 2019; González-Alday et al., 2009; 
Martins et al., 2021). In case of our research, the 
diversity of soil seed bank is low: min 0.19 (Kozinec – 
meadow); max 1.81 (Kozinec – ecotone); average 1.24 
(Kozinec) and 1.28 (U cesty). 

In the ordination diagram of the DCA analysis 
of the cultivation method, the first DCA1 axis is 
a combined gradient of the fine earth variable and most 
habitat components (forests and wetlands) and their 
representation in 100m area (forests, tailings, 
anthropogenic areas), which captures 17.292% of total 
species composition variation. It thus represents a 
gradient of more nature-close habitats, where the 
significant impact of nearby anthropogenic habitats 
with ruderal and pioneer species is manifested. The 
second axis represents the combined gradient of the 
content of selected heavy metals (chromium and 
arsenic) together with the slope variable and the non-
forest habitats. This axis captures 13,627 % of 
variation in species composition. The representation of 
waterbody in the vicinity of 100 m is correlated by 
both axes. 

According to the results of the multivariate 
analysis, half of the selected environmental variables 
impacts the species score. The strongest relation 
(p<0.001) is in the forest habitat variable. Relations of 
variables of tailings up to 100 m, wetland habitat, 
representation of non-forest areas in the vicinity of 100 
m, anthropogenic areas up to 100 m and forests up to 
100 m gradually decreases. Variables of chromium and 
arsenic content, waterbody areas up to 100 m, fine 
earth content, slope and non-forest habitats are 
statistically insignificant. However, the effect of 
chromium and arsenic content on the cultivated soil 
seed bank is affected by the medium used for 
cultivation (a common horticultural substrate). Seed 
cultivation in the original medium - tailings was 
unsuccessful, only one species of Poa annua, which is 
potentially bioaccumulate As (Comino et al., 2009), 
germinated. In case of using a common horticultural 
substrate, several species germinated. An increased 
concentration of chromium and arsenic in the soil may 
affect the soil seed bank by inhibiting seed germination 
through reducing α-amylase and β-amylase activity 
leading to a reduction in sugar stores for the 
developing embryo (Liu et al., 2005; Zeid, 2001). 
Cases of affecting the structure and function of male 
gametophytes in the kiwi species, inhibiting pollen 
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germination and pollen tube growth, and inducing 
alteration in the pollen tube shape (Speranza et al., 
2009, 2007), and callose deposition and 
arabinogalactan protein distribution in the pollen wall 
(Speranza et al., 2009) have also been reported. The 
ability of plant species to cope with the effects of 
chromium and arsenic toxicity on germination depends 
on their tolerance to these heavy metals, which varies 
significantly from species to species and source of 
contamination (López-Luna et al., 2009). For example, 
increasing arsenite content reduces wheat germination 
(Triticum aestivum) by up to 38% at a concentration of 
16 mg/l, and by 24.2% for arsenate (Liu et al., 2005). 
In the case of chromium, germination has been reduced 
in the same species at a concentration of 100 ppm Cr 
(VI) by 63% (Dotaniya et al., 2014). On the other 
hand, variables that can provide a subsidy of seeds up 
to a radius of 100 m (apart from waterbody areas) and 
the immediate source of seeds according to the 
affiliation to the habitat (apart from forest-free) have a 
higher impact in our study. 

The ordination diagram of sampling sites shows 
two clusters. The first, BI, lies on the border of the 2nd 
and 3rd quadrants which are represented by the sites of 
the forest interior of both Kozinec and U cesty, forest-
wetland ecotone and forest-meadow and wetland 
habitat of Kozinec. The cluster is mainly impacted by 
tailings coverage, fine earth, and forest habitat 
variables. The second, looser BII cluster consists of the 
wetland part of the U cesty basin, where non-forest 
area up to 100 m and wetland habitat are impactful 
variables according to the diagram. The sampling sites 

on tailings of U cesty basin with developed ruderal 
vegetation, forest site number 10 with a significant 
development of tree juveniles and an area 16 which is a 
forest-wetland ecotone are the diagram outliers. 

The relation between plant species and 
environmental variables of soil seed bank analysis is 
shown in Figure 4. The species on the ordination 
diagram do not form any solid clusters, they are 
scattered. Most environmental variables affect only 
a few captured plant species. Species of annual to 
perennial herbs bound mainly to anthropogenic or 
wetland vegetation shows a correlation with the 
representation of anthropogenic areas. These are 
Sinapis arvensis, Lapsana communis, Poa annua, 
Chrysosplenium alternifolium, Persicaria hydropiper, 
Artemisia vulgaris species. In the second quadrant 
there are slope, fine earth, forest habitat, tailings, and 
forests variables. The presence of tailings, forests and 
forest habitats have similar vectors, and they affect 
similar species - perennial herbs of wetland, forest, 
often anthropogenic habitats such as Lamium album, 
Erigeron annuus, Plantago major, Galium aparine and 
a woody species Alnus glutinosa. The representation of 
water bodies correlates with species Chenopodium 
polyspermum, Rubus idaeus, Capsella bursa-pastoris 
that requires an environment with sufficient nutrients 
and occurs in wetland, floodplain forest and anthropic 
habitats. The species corresponding to the variable of 
non-forest areas are meadow perennial herbs of at least 
partially illuminated places (Daucus carota, 
Eupatorium cannabinum, Cirsium arvense, Hypericum 
perforatum, Tanacetum vulgare).  

 
Figure 4. DCA diagram of soil seed bank 
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In contrast to the aboveground vegetation, the 
effect of chromium and arsenic content affects fewer 
plant species. Weak bonds to the chromium content 
are manifested only in Glechoma hederacea, one of 
the medical plants known as concentrator of 
chromium (Šeremet et al., 2022) and Phragmites 
australis, which has seeds highly tolerant to 
chromium pollution (Calheiros et al., 2008). Only 
Festuca rubra is affected by arsenic. This plant is 
considered an excluder - a plant capable of effective 
limitation of heavy metal uptake level into its shoots 
(Dradrach et al., 2020), which is often used in the 
revegetation of degraded habitats, mine spoils or in 
the remediation of contaminated soils (Cuske et al., 
2016; Simon, 2005). In general, our cultivation 
analysis of the soil seed bank reveals the 
predominance of herb species with an optimum or 
dominant in anthropogenic vegetation. 

 
4. CONCLUSION 
 
Research has shown excessive values of the 

content of the risk elements chromium and arsenic in 
the soils of subsidence basins, especially on tailings 
and wetland areas, therefore further attention should 
be paid specifically to these parts of the basins. The 
impact of chromium content on the above-ground 
vegetation is statistically significant, which is 
characterized by the presence of various species of 
metallophytes, often with a high vegetation coverage 
in the given area. In further research, the content of 
risk elements in metallophyte biomass should be 
analysed to assess the development of the pollution of 
subsidence basins and the possible rehabilitation of 
these areas by spontaneous succession. Succession 
can be influenced by the soil seed bank, which is in 
subsidence basins impacted by forest and wetland 
biotopes, but also by the presence of anthropogenic 
structures, areas covered with tailings and non-
forested biotopes in their vicinity. The inability of 
most seeds to germinate on contaminated tailing was 
apparent in former experiments. However, in more 
suitable conditions (without contamination) they 
germinate and grow without problem, which was also 
proven by DCA, where no statistically significant 
dependence on As and Cr was demonstrated. The 
possibility of using this information to potentially 
rehabilitate subsidence basins and create valuable 
biotopes should be further explored. 
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