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Abstract: Variability of soil resources in space and time can be a useful indicator in evaluating 
desertification risk in arid and semi-arid regions. We have compared the coefficient of variation (CV) 
and the fractal dimension of spatial variation (D) for some selected properties of soils with a slope of 
<3°, designated as mild-to-moderate sloping (MMS) and soils with the slope of >3°, designated as 
moderate-to-steep sloping (MSS) soils, in a 1,041.2 ha catchment located in North-Central Anatolia, 
Turkey. The study area was sampled based on a random sampling scheme, taking a total of 142 geo-
referenced samples from 0-0.30 m soil depth. All soil samples were analyzed for soil properties of 
electrical conductivity (EC), pH, soil organic matter (SOM), sand, silt, clay, and coarse material, cation 
exchange capacity (CEC), crusting index (CI), penetration resistance (PR), and soil erodibility factor (K). 
The spatial variation of soil variables was characterized in MHS and SMS soils by CV, semivariogram 
analysis, and D. In general, higher CV values occurred in SMS soils, and the nugget effect values 
calculated for these variables was lower in SMS soils, revealing a greater spatial dependency of these 
variables in these soils, and a greater potential for desertification in these areas. Variables with a stronger 
spatial structure had a higher CV and a lower D. In general, higher CV values and lower D values 
occurred in SMS soils, indicating a greater desertification potential of these soils. Strong spatial 
distribution of soil properties in both slope classes suggested that D should be preferred over CV in 
evaluating the desertification risk in these areas. 
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1. INTRODUCTION 
 
Desertification operates principally in arid, 

semi-arid, and sub-humid environments. It involves 
excessive human pressure, changes in land use, as 
well as in the natural processes (Mouat et al., 1997). 
Desertification reduces productivity, biodiversity, 
and economic viability of land, and is associated to 
long-term changes in ecosystem function (Dregne, 
1977), involving both the spatial and temporal 
components of the ecosystem function (Mouat et al., 
1997).  

Desertification results from a number of 
diagnostic processes, which are different in different 
ecosystems (Mouat et al., 1997). Physical, chemical, 
and biological properties of soils are often used as 
desertification indices (Schlesinger et al., 1990). 

Among these properties, soil erosion, salinization, 
and soil chemistry are generally included in 
desertification studies. Mouat et al. (1997) listed 
potential indicators that can be used in evaluating 
desertification. The list included soil variables such 
as organic matter content, albedo, erosion index, 
ratio of soil carbon-to-nitrogen, and soil salinization. 
Schleinger et al. (1990) suggested that soil 
heterogeneity at local levels may be used as inputs to 
desertification models operating at global scales. 
Selecting a set of potential indicators of 
desertification may differ in terms of the models 
used. Miller and Donahue (1995) suggested carbon 
to nitrogen ratios as indicator of the nutrient status of 
soils. Others (Su et al., 2004) related fractal 
coefficient of soil particles (Ds) to soil 
desertification degree, showing that the higher the 
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sand content, the lower the Ds one, indicating a 
greater desertification degree of farmlands. Su et al. 
(2004) also detected a significant relationship 
between Ds and each of the total N and organic C 
content of the soils they studied. 

Soil heterogeneity was suggested to be a 
potential indicator of desertification. Schlesinger at 
al. (1990) suggested that the changes in ecosystem 
function at the transition between arid and semi-arid 
regions can well be understood in the context of the 
spatial and temporal distribution of soil resources, 
hypothesizing that when net long-term 
desertification of productive grasslands occurs, the 
relatively uniform distribution of water, nitrogen, 
and other soil resources is replaced by an increase in 
their spatial and temporal heterogeneity. Schlesinger 
et al. (1990) used the coefficient of variation for pH, 
saturation percentage, soil moisture, and total 
nitrogen as indicators of desertification, higher CV 
showing a greater potential for desertification in 
their studies. 

In classical statistics, parameters such as 
standard deviation, coefficient of variation, and 
standard error from the mean are frequently used to 
characterize spatial variability of a given property 
(Webster, 2001). Eghball et al. (1999) pointed out 
that the use of classical statistics in evaluating data 
on spatial or temporal dependency may result in 
misleading conclusions. They further suggested that 
semivariogram and fractal analyses can be useful in 
determining and comparing the domination of short- 
or long- range variation between treatments or 
management systems. 

Fractal analysis has proved useful in 
characterizing plant and soil parameters. Burrough 
(1983) first suggested that the fractal theory of 
Mandelbrot (1982) would be appropriate to describe 
scale-dependent variability of soil properties. In 
fractal analysis, the fractal dimension, D, is a scale 
independent indicator of the shape (geometry) of the 
fractal object being studied (Eghball et al., 1999). 
The slope of the regression line of log 
semivariogram versus log lag (h, distance) is used to 
estimate D. Contrary to a small D, which indicates 
the importance of long-range variations, a large D 
indicates the importance of short-range variations 
(Burrough, 1983). 

Topography greatly influences the soil genesis 
due to its controlling effects on water-related 
processes (Kachanoski et al., 1985). The processes 
leading to soil heterogeneity in space and time 
would act at different magnitudes depending on 
slope steepness. This should result in desertification 
processes to act in different magnitudes in different 
topographies. This motivated the hypothesis that 

slope steepness should be an important factor in 
desertification studies of sloping soils and that 
spatial variation of soil properties with different 
slope steepness may be compared to verify this 
hypothesis. Therefore, the objective of this study has 
been to compare the desertification potential of soils 
stratified in two slope complexes within a small 
catchment. With this regard, probabilistic fractals 
and classical statistics have been applied in 
evaluating the desertification potential and results 
are discussed. 

 
2. MATERIALS AND METHODS 
 
2.1. Materials 
 
This study has been conducted in the small 

Çelikli catchment, located in the Tokat region, North 
Central Anatolia (Fig. 1). The catchment is 1,041.2 
ha, and lies at an average altitude of 1,300 m. It is 
situated in the area of transition from Central 
Anatolia to the Middle Black Sea region. 
 

 
Figure1. Location of the study area with soil sampling                 

sites shown by dots 
 

The soils, Entisols, Mollisols, and Alfisols, 
which are moderate-to-well drained soils with slope 
of 1.3° to 6.3° in most of the area. The catchment 
contains mild-to- moderate steep areas with low 
vegetation densities and/or under cultivation. The 
areas with <6.3° slopes are mainly cultivated. The 
major vegetation type in fallow areas is grassland, 
with Graminea and Fabaceae as dominant species, 
other types being shrubs and meadows. The 
cultivated areas are relatively large, covering 67.8% 
of the catchment. Wheat, sugar beet, and cover crops 
constitute most of the agricultural production; wheat 
is the main agricultural crop in the study area. Some 
woodland, mostly shrubs with a few trees, covering 
approximately 5% of the catchment, are scattered 
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about. The natural grassland mostly degraded due to 
heavy grazing, cover 24.8% of the area. The mean 
annual temperature is 8.1oC, and the annual 
precipitation mean is 535.9 mm, 84.7% of which fall 
between October and May. 

 
2.2. Methods  
 
2.2.1. Soil Sampling and Analysis 
Geo-referenced soil samples were taken in 

July 2002 from 142 sites at 0-0.30 m soil depths, 
based on the same type of slope, management, soil, 
and visual properties of the landscape in the 
catchment. The sampling points, GPS localized with 
an error of ± 3 m Euclidean (x, y) relative positions 
within the study area, have been used in spatial 
analysis. The locations of soil sampling sites are 
shown in figure 1. After removing stones and large 
plant roots or debris by air drying, each sample was 
thoroughly mixed and pulverized to pass through a 
2-mm sieve and then stored in a plastic container 
prior to analysis. The soil samples then have been 
analyzed for soil organic matter (SOM) by the 
Walkley-Black procedure (Nelson & Sommers, 
1982), soil pH in 1:2 soil:water suspension 
(McLean, 1982), soil textural elements separated 
with a Bouyoucos hydrometer (Gee & Bauder, 
1986), and for cation exchange capacity (CEC) by 
saturating the soil samples with sodium acetate 
(Rhoades, 1982). Particles, greater than 2-mm in 
diameter, were separated and reported as coarse 
material (CM) (Gee & Bouder, 1986). Soil 
penetration resistance was measured with a cone 
penetrometer (Bradford, 1986). The soil erodibility 
factor (K) was calculated by the regression equation 
(Wischmeier et al., 1971): 

 
K=2.8x10-7M1.14(12-a)+4.3x10-3(b-2)+3.3x10-3(c-3) (1) 

 
where, M is the particle-size parameter (% silt 

+ % very fine sand) x (100-% clay), a is percent 
organic matter, b is soil structure code (very fine 
granular: 1, fine granular: 2, medium or coarse 
granular: 3, and blockish, platy, or massive: 4), 
which was determined in the field, c is soil profile 
permeability class (rapid: 1, moderate-to-rapid: 2, 
moderate: 3, slow-to-moderate: 4, slow: 5, and very 
slow: 6). The crusting index (CI) was calculated 
from soil organic matter ratio index by the following 
equation (Lal et al., 1997):  

 
CI = Soil Organic Matter Content(%)/Clay(%)x100 (2) 

 
2.2.2. Exploratory Data Analysis 
Statistical parameters of mean, maximum, 

minimum, standard deviation, coefficient of 

variation, skewness, and kurtosis have been 
calculated for EC, pH, SOM, CEC, sand, silt, and 
clay contents, coarse fragments, soil penetration 
resistance, erodibility (K), and crusting potential in 
order to characterize their distributions in MMS 
(mild-to-moderate sloping) and MSS (moderate-to-
steep sloping) soils. 

 
2.2.3. Spatial and Fractal Analysis 
Semivariograms have been used to describe 

the spatial distribution of soil variables in MMS and 
MSS soils. A semivariogram is a graphical 
representation of spatial self-correlation by plotting 
the semivariance for several distance intervals 
(Diekmann et al., 2007). Semivariograms have been 
calculated by the equation (Diekmann et al., 2007):  
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where, γ (h) is the estimated semivariogram, 

z(xi) and z(xj+h) are the values of a variable separated 
by the lag h, and N(h) is the number of data pairs in 
the corresponding lag. 

Fractal analysis has been performed by using 
spatial data of soil variables to evaluate their pattern 
and extent of spatial variability in MMS and MSS 
soils according to the method of Burrough (1983) 
and Eghball et al. (1999). 

The data which deviated from normal, have 
been transformed. The type of transformation was 
based on the coefficient of skewness, as suggested 
by Webster (2001). The variables with a coefficient 
of skewness greater than the absolute value of 1.0 
were transformed to logarithms, while those between 
0.5-0.99 were transformed to square root (Webster, 
2001). No transformation has been made to the data 
with a coefficient of skewness<0.5. Anisotropy data 
have also been checked in order to calculate the 
directional semivariograms, whenever necessary.  
We have used the most adequate lag intervals 
yielding the best representative semivariograms. 
Minimum 20 data pairs have been used in a lag for a 
safe calculation of semivariance. The 
semivariograms have been extended to 1,800 m, 
which is less than the shortest axis of the study area, 
as suggested by Rossi et al. (1992). We have applied 
the least square analysis for goodness of fit for 
semivariograms. Although the spherical models are 
generally preferred since they are a good fit to 
semivariograms of soil properties (Webster, 1985), 
exponential and Gaussian models have been applied 
in some cases since they better described our 
experimental semivarograms. The semivariogram 
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analysis has been made by GS+ (version 7, Gamma 
Design Software, Plainwell, MI). 

The spatial structure of a fractal function for 
variables has been described as: 
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where, γ (h) is the semivariogram, h is the lag, 

H is the codimension, and k is a constant related to 
the extent of variation. 

The fractal dimension D is calculated based on 
the following relationship (Burrough, 1983; Eghball 
et al., 1999): 

 
HdD 5.0−=                 (5) 

 
where, d is the Euclidean dimension, which is 

2 for a plain (Mandelbrott, 1982). Regression of log-
lag (distance) vs. log-semivariogram of a variable 
yielded an estimated fractal dimension (D = 2-0.5H), 
where H is the slope (codimension) of resulting 
regression line (Eghball et al., 1999). To improve the 
fit of least square analysis, the data points lying 

within the clearly defined range of the 
semivariogram were used as suggested by Burrough 
(1983).  

 
3. RESULTS AND DISCUSSION 
 
The exploratory statistics for soil variables in 

MMS and MSS soils is presented in Table 1. Slope 
steepness had a slight influence on soil chemical 
properties compared to soil physical properties. 
Studies have shown that soil electrical conductivity 
(EC) is an integrated measure of many soil physical 
and chemical properties that it can be used as a 
surrogate of soil properties affecting soil 
productivity (Bekele et al., 2005). Mean EC values 
in both SMS and MHS areas were not high enough 
to constrain crop growth, and they exhibited a slight 
difference between the two slope classes. The soils 
in the study area are poor in OM as indicated by the 
mean value in both slope classes. Dexter (2004) 
established a very close relation between soil 
physical quality and SOM content. 

 
 

Table 1. Descriptive Statistics of Soil Variables in MMS (mild- to-moderate sloping) and MSS (moderate- to-steep 
sloping) soils. 

 
MMS 

Variable Mean #SD Min Max #CV Skewness Kurtosis 
#EC, mmhoscm-1 0.636 0.145 0.35 0.91 22.80 0.16 0.73 
pH 7.339 0.512 6.40 8.63 6.98 0.09 0.83 
#SOM, % 0.393 0.407 0.89 1.47 103.56 0.48 1.37 
#CEC, meq100g-1 5.909 0.763 4.42 8.19 12.91 0.18 0.23 
Sand, % 44.851 9.136 28.27 64.95 20.36 0.20 0.80 
Silt, % 23.646 3.747 12.91 32.36 15.85 0.16 0.27 
Clay, % 31.503 9.117 12.17 47.88 28.94 0.10 0.83 
#CM, % 17.109 9.001 4.14 38.40 52.61 0.48 0.81 
#PR, KPa 1553.4 1047.0 170.7 3882.3 67.4 0.38 1.13 
#K, Dimensionless 0.3102 0.096 0.10 0.55 31.04 0.11 0.13 
#CI, Dimensionless 1.002 0.452 0.25 2.24 45.11 0.20 0.94 

MSS 
#EC, mmhoscm-1 0.631 0.144 0.32 0.92 22.82 0.05 0.42 
pH 7.616 0.367 6.65 8.30 4.85 0.78 0.05 
#SOM, % 0.410 0.404 0.89 1.28 98.54 0.27 0.75 
#CEC, me100g-1 5.807 0.851 4.20 8.07 14.65 0.44 0.12 
Sand, % 6.919 0.691 5.63 8.65 9.99 0.56 0.39 
Silt, % 23.233 4.174 14.25 33.20 17.97 0.09 0.21 
Clay, % 28.426 8.873 4.08 46.31 31.21 0.22 0.06 
#CM, % 2.949 0.579 1.61 4.22 19.63 0.17 0.52 
#PR, KPa 1795.8 1109.4 200.5 3568.4 61.78 0.17 1.56 
#K, Dimensionless 0.116 0.053 0.01 0.24 45.69 0.28 0.36 
#CI, Dimensionless 1.092 0.474 0.20 2.24 43.41 0.27 0.31 

#SD: Standart deviation, CV: Coefficient of variation, EC, Electrical conductivity, SOM: Soil organic matter, CEC: 
Cation exchange capacity, CM: Coarse material, PR: Penetration resistance, CI: Crusting index, K: Soil erodibility 
factor.   

 



That higher SOM found in MHS soils has 
been attributed to the majority of soils being 
cultivated. Comparably lower cation exchange 
capacity (CEC) in MMS areas may be assigned to 
the lower organic matter and higher coarse material 
(CM) content in these soils. The K-factor was 
comparably high in MSS soils while PR and crusting 
index (CI) remained relatively similar. Higher CM 
content in MSS soils has been attached to the 
transportation by gravity of coarse material from 
steeper areas and its accumulation in gently sloping 
localities. 

Schlesinger et al. (1990) designated CV as an 
indicator of potential desertification, suggesting that 
greater CV is an indicator of a greater potential for 
desertification. This is caused by the fact that in 
time, the islands of fertility become favored sites for 
shrub generation and yield self-augmented levels of 
local fertility. Such changes alter not only the local 
distribution of soil resources but also the extent and 
location of other ecosystem sites in the landscape. 
Table 1 reveals that, in general, higher CV of 
variables occurred in MMS soils than in MSS soils. 
Mulla and McBratney (2002) grouped CV-values 

nominally. According to their grouping, SOM 
exhibits a considerably high variation in both MMS 
and MSS areas (Table 1). The K-factor shows a 
comparable difference in CV between MMS and 
MSS soils, while PR and CI reveal greater, but 
similar, variations in both MMS and MSS soils. That 
the variation of CM is considerably different has 
been attributed to the fact that the gravity-induced 
translocation of CM would be highly heterogeneous 
in the landscape. 

When the soil is cropped, it has additional 
sources of heterogeneity, exclusively caused by the 
effects of management in agriculture (Veronese 
Júnior et al., 2006). Therefore, the somewhat greater 
variation of soil properties in MMS areas would be 
related to the way agriculture is being managed. 
According to the basic principles of 
experimentation, established by classical statistical 
methods, soil variability occurs entirely at random, 
requiring the validation of basic hypotheses such as 
the independence between observations due to 
randomness of variations from one place to another 
(Veronese Júnior et al., 2006). 

 
Table 2. Geostatistical parameters and corresponding goodness of fit parameters for soil variables in MMS (mild- to-

moderate sloping) and MSS (moderate-to-steep sloping) soils. 
 

Soil property Nugget 
(C0) 

Sill (Cs) Range, 
m 

Model #R2 #RSS NE, 
% 

MMS 
#EC, mmhoscm-1 0.0058 0.0226 460.7 Gausian 0.63 1.57x10-4 20.55 
pH 0.0923 0.2946 801.9 Gausian 0.80 0.0154 23.86 
#SOM, % 0.0492 0.2404 1742.0 Spherical 0.88 6.94x10-3 16.99 
#CEC, cmolkg-1 0.1090 0.6350 804.0 Exponential 0.73 0.0638 14.65 
Sand, % 13.8000 86.9400 276.0 Spherical 0.63 829.0 13.70 
Silt, % 0.0100 12.8400 139.0 Spherical 0.13 38.4 0.08 
Clay, % 1.3000 81.8100 222.0 Spherical 0.60 894 1.56 
#CM, % 2.7000 81.6400 323.0 Spherical 0.79 632.0 3.20 
#PR, KPa 1.19x105 1.06x106 93.0 Exponential 0.01 3.40x1011 10.07 
#K, Dimensionless 4.0 x 10-5 8.4 x 10-3 153.0 Spherical 0.23 1.32x10-5 0.47 
#CI, Dimensionless 0.0948 0.2596 1497.0 Spherical 0.82 8.65 x 10-3 26.75 

MSS 
EC, mmhoscm-1 0.0108 0.0218 672.0 Gaussian 0.81 3.49x10-5 33.23 
pH 2.8x10-3 5.7x10-3 972.0 Exponential 0.38 7.76x10-6 33.29 
SOM, % 0.0246 0.1782 111.0 Spherical 0.04 4.40x10-3 12.13 
CEC, cmolkg-1 0.1590 0.7560 700.0 Spherical 0.93 0.0245 17.38 
Sand, % 0.2408 0.4846 1353.0 Exponential 0.40 0.0761 33.20 
Silt, % 6.6900 17.7100 819.0 Exponential 0.52 71.5000 27.42 
Clay, % 38.4000 76.8100 1257.0 Exponential 0.50 1084 33.33 
CM,% 0.0020 0.3120 81.0 Spherical 0.00 0.0159 0.64 
PR, KPa 4.08x105 1.32x105 747.0 Exponential 0.74 1.79x1011 23.56 
K, Dimensionless 0.000159 0.0027 183.0 Exponential 0.13 2.42x10-6 5.60 
CI, Dimensionless 0.01900 0.2320 141.0 Spherical 0.14 0.0136 7.57 

#RSS: Residual sum of squares, EC: Electrical conductivity, SOM: Soil organic matter, CEC: Cation exchange capacity, CM: Coarse 
material, NE: nugget effect calculated as (Co/Co+Cs)x100,  PR: penetration resistance, CI: Crusting index, K: Erodibility factor 
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However, many studies have shown that soil 
attributes exhibit some degree of spatial dependence 
(Journel & Huijregts, 1991; Mulla & McBratney, 
2002; Veronese Júnior et al., 2006). This 
necessitates the use of geostatistical methods 
(Veronese Júnior et al., 2006). Geostatistics is based 
on the theory of regionalized variables, which 
considers the structure of spatial variability within 
the sample site (Trangmar et al., 1985; Isaaks & 
Srivastava, 1989; Mulla & McBratney, 2002; 
Veronese Júnior et al., 2006). The structure of 
spatial variation can be analyzed either by the 
correlation function (correlogram), the covariance 
function, or the semivariogram (Isaaks & Srivastava, 
1989). 

The semivariogram is widely used in 
analyzing spatial dependence of variables in a 
sample site. The nugget variance, sill, and range 
parameters together with the type of semivariogram 
(spherical, Gaussian, exponential, etc.) are 
interpreted in order to understand the nature of 
spatial dependence (Trangamar et al., 1985; Isaaks 
& Srivastava, 1989). Cambardella et al. (1994) 
designated spatial continuity according to the nugget 
effect calculated as Co/Cs+Co, where, Co is the 
nugget variance and Cs is the structural component 
(the variance due to distance). According to these 
authors, a soil property with a nugget ratio<25% was 
highly space-dependent, between 25% and 50% 
moderately space-dependent, and above 75% weakly 
space-dependent. Except for CI, all the variables 
studied were highly space-dependent in MMS areas, 
being moderate space-dependent in MSS areas 
(Table 2). The soil textural components were more 
spatially dependent in MMS soils, and contrary to 
PR, CI and the K-factor were more space-dependent 
in MSS soils. The geostatistical range values 
differed from 139 m for silt content to 1,742 m for 
OM content in MMS soils, while it ranged from 81 
m for CM to 1,353 m for clay content in MSS soils. 
Considerably different values in the geostatistical 
range were found for the variables SOM, sand, clay, 
and silt contents, CM, CI, and PR (Table 2). As 
suggested by Eghball et al. (1999) and Veronese 
Júnior et al. (2006), for those space-dependent 
variables, the use of their CV-values would lead to 
erroneous conclusions on their spatial variations 
since they have a spatial structure. Therefore we 
have used probabilistic fractals to compare the 
variation of the variables in MMS and MSS areas.  

 
3.1. Fractal Analysis 
 
Fractal analysis has been conducted separately 

in MMS and MSS soils over data for each variable. 

The linear portion of log semivarince versus log 
distance of SOM-data has been used in linear 
regression analysis and the fractal dimension D 
(known technically as Hausdorff-Besicovitch 
dimesion, Burrough 1983) has been calculated by 
the slope of the resultant regression line as described 
under Methods 2.2. Table 3 shows the calculated 
fractal coefficients and the corresponding parameters 
of goodness of fit for the variables studied in MMS 
and MSS soils. 
 
Table 3. Fractal coefficients (D), calculated for variables 
studied, and parameters of goodness of fit for the 
corresponding regression analysis MMS (mild-to- 
moderate sloping) and MSS (moderate-to-steep sloping) 
soils. 
 

Soil variable n R2 D 
MMS 

#EC, mmhoscm-1 9 0.8040 1.83 
pH 14 0.8090 1.81 
#SOM, % 11 0.8693 1.81 
Sand, % 9 0.9100 1.90 
Clay, % 10 0.9474 1.89 
#CM, % 11 0.8349 1.85 
#CEC, cmolkg-1 15 0.9389 1.84 
#K, Dimensionless 15 0.9143 1.91 
#CP, Dimensionless 15 0.9418 1.85 
#PR, KPa 15 0.8544 1.92 

MSS 
#EC, mmhoscm-1 13 0.8100 1.90 
pH 15 0.9191 1.90 
#SOM, % 15 0.8451 1.93 
Sand, % 15 0.8046 1.87 
Clay, % 15 0.8612 1.91 
Silt, % 10 0.8045 1.90 
#CM, % 10 0.9339 1.95 
#CEC, cmolkg-1 15 0.8435 1.82 
#K, Dimensionless 9 0.7609 1.93 
#CP, Dimensionless 10 0.7525 1.92 
#PR, KPa 14 0.8069 1.89 

#EC: Electrical conductivity, SOM: Soil organic matter, CEC: 
Cation exchange capacity, CM: Coarse material, K: Erodibility 
factor, CP: Crusting potential, PR: penetration resistance, n: 
number of data points included in the calculations. 
 

The values of D reported in Table 3 are higher 
than 1.50 in all the cases. In spatial analysis, a large 
D indicates the dominance of the short-range effect 
and closeness of scales of variation (Burrough, 
1983; Eghball et al., 1999). For spatial variability, D 
can take any value between 1 and 2. A D, close to 2, 
indicates that a two dimensional surface is 
approximately covered by the extent of variation, 
while D close to 1 signifies that values in the spatial 
range lie approximately on a line (Eghball et al., 

 86



1999). For soil variables, high D values have often 
been reported (Burrough, 1983; Eghball et al. 1999; 
Bekele et al., 2005). These high D-values are 
expected to be the short-range variation in these soil 
variables caused by many interacting processes such 
as rock weathering, biological action, micro-relief, 
cryoturbation, erosion, deposition, and so on. Table 
3 also indicates that while spatial variation of soil 
properties such as silt, CEC, and CI strongly fractal, 
others are poorly fractal as revealed by the values of 
the corresponding D-values. Table 3 further shows 
that the fractal quality of variables in MMS and 
MSS soils is dissimilar. 

In general, higher D-values have occurred in 
MSS soils than in MMS soils, showing more self-
similarity in spatial variation of the variables studied 
in MSS areas. D-values obtained for SOM in MMS 
and MSS soils are highly different, while those for 
K-factor and PR are very similar (Table 3). With the 
exception of CEC, self-similarity in the spatial 
heterogeneity of soil chemical properties has 
differed more between MSS and MMS soils than 
those of soil physical properties (Table 3). However, 
values of CV calculated for the same soil variables 
in the same areas indicate a greater difference in the 
spatial variation of soil physical parameters between 
two contrasting soils. 

We found that soil variables with a stronger 
spatial structure also had greater CV-values (Tables 
1,2), while self-similarity in their spatial variation is 
lower as their lower D-values indicate (Table 3). 
Therefore, our calculations have shown that, in 
terms of a higher CV, lower D values indicate a 
greater potential for desertification.  

One of the advantages using fractal analysis in 
characterizing variability parameters is that the 
fractal dimension is scale-independent (Eghball et 
al., 1999). Once the properties of fractal are known 
at one scale, they can be deduced for another scale 
(Burrough, 1983). Thus, once we have determined 
the variance of a particular soil variable at one scale, 
we can determine it at another scale if that particular 
property is self-similar as implied by a high fractal 
dimension. Our analysis resulted in higher CV-
values for MMS soils, indicating a greater 
desertification potential in these soils. The lower D-
values calculated for MMS areas may be interpreted 
as lesser self similarity (heterogeneity) of soil 
properties in these areas. Therefore, as already stated 
above, a high value for probabilistic fractals may be 
indicative of a lower degree of desertification 
potential. 

In spite of large D-values that point to the 
importance of short-range variation, the low nugget 
effect (Table 2) indicates the importance of long-

range variation. In a likely sampling campaign in the 
study area, to resolve confusing long-range variation 
for short-range variation, the sampling spacing 
yielding the lowest D values should be sought as 
suggested by Burrough (1983). 

 
4. CONCLUSIONS 
 
Heterogeneity of electrical conductivity (EC), 

pH, soil organic matter (SOM) content, cation 
exchange capacity (CEC), sand, silt, and clay 
content, and soil erodibility factor (K), crusting 
index (CI), and penetration resistance (PR) were 
compared by means of the coefficient of variation of 
classical statistics, semivariogram analysis, and 
probabilistic fractals in order to evaluate the effect 
of slope steepness on desertification in a 1,021-ha 
catchment with sloping landscapes. The variables 
were evaluated separately in the soils of mild- to-
moderate sloping areas (MMS) and in moderate-to-
steep sloping areas (MSS). Unexpectedly, in general, 
higher CV values in MMS areas, indicate a greater 
potential for the desertification of these soils. The 
semivariogram analysis has revealed that soil 
variables are generally stronger space-depended in 
both slope classes, suggesting the use of D values 
calculated from semivariograms of soil variables. 
Contrary to CV, higher D values occurred for 
variables in MMS areas, indicating a greater self-
similarity or homogeneity of the spatial variation of 
these variables and suggesting a lower 
desertification potential in these areas. Compared to 
higher D-values for soil chemical properties, lower 
D-values have been found for soil physical 
variables; the K-facor, PR, and CI in MMS soils. 
That the spatial variation of the soil variables studied 
is more self-similar in MMS areas is attributed to a 
lower desertification potential in these areas than in 
MSS areas, because MMS soils are mostly 
cultivated and differences in agricultural practices 
would be an additional source of dissimilarity in the 
spatial structure of these variables. 
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