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Abstract: In the era of changing climate, drought assessment and monitoring are vital at the Langat River 
Basin, a fast-growing region in Peninsular Malaysia with two dams located in the basin. Drought indices 
Standardized Precipitation Index (SPI) that is solely based on rainfall, and Standardized Precipitation 
Evapotranspiration Index (SPEI) that considers both rainfall and potential evapotranspiration (PET), were 
adopted to assess the frequency and severity of droughts in this study. The General Circulation Model 
(GCM) outputs from the second generation Canadian Earth System Model (CanESM2) under the 
Representative Concentration Pathway (RCP) 8.5 were statistically downscaled using the Statistical 
Downscaling Model (SDSM) version 4.2.9 to produce the required regionalized rainfall and temperature 
data. Both indices with respective time scales of 1-, 3- and 6-month were calculated using observed and the 
projected climate data. Downscaling results showed that temperature of the basin will increase drastically 
in 2021-2050. Therefore, PET should not be excluded in drought assessments. It was found that SPI tends 
to underestimate drought events, and its correlation with SPEI decreases over time. Hence, SPEI, that 
considers the effect of PET, is more suitable for describing drought events. In general, projected high 
rainfall reduces the frequency and severity of drought in the Langat River Basin.   
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1. INTRODUCTION 
 
Water is a vital resource for human’s health, 

society and the environment. It is not only the key 
resource for human beings, but it also has a 
significant influence on the ecosystem. However, 
because of its high temporal and spatial distribution 
variability, this often results in water deficiency in 
different places and at different times. Environmental 
issues such as global warming and climate change 
further amplify the variability and severity of these 
water resources. Thus, water planning and 
management is a challenging yet rewarding 
mandatory task in many regions. Drought is one of 

the main challenges in the planning and management 
of water resources. It is a crucially damaging yet least 
understood natural disaster. Drought events evolve 
slowly as below-average rainfall over a long span and 
their impacts could last over a long period. Because 
of this slow onset characteristic, its onset and offset 
are hard to be determined. The significant spatial and 
temporal variability of precipitation also increases the 
difficulty of drought identification. A drought is 
loosely defined as a prolonged and abnormal moisture 
deficiency phenomenon at a given place and is 
particularly associated with certain periods of 
significantly lower rainfall, soil moisture, surface 
water storage, streamflow, and ground water level.  
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Recurring and permanent droughts will 
inevitably lead to desertification of sizeable areas on 
our planet. Since there is no set definition for droughts, 
a wide range of drought identification and assessment 
indices had been introduced to monitor and gauging 
droughts, including the well-known Standardized 
Precipitation Index (SPI) (Edwards & McKee, 1997), 
Effective Drought Index (EDI) (Byun & Wilhite, 
1999), Palmer Drought Severity Index (PDSI) (Palmer, 
1965), Reconnaissance Drought Index (RDI) (Tsakiris 
& Vangelis, 2005) and Standardized Precipitation 
Evapotranspiration Index (SPEI) (Vicente-Serrano et 
al., 2010). These have been widely used for drought 
monitoring and forecasting studies and have proven 
effective for describing the frequency and severity of 
droughts (Venkataraman et al., 2016; Huang et al., 
2016; Sierra & Kaya, 2016; Ruqayah & Miklas, 2017; 
Soh et al., 2018).  

According to The Intergovernmental Panel on 
Climate Change (IPCC), current researches show that 
anthropogenic emissions of greenhouse gases (GHG) 
are at its highest in record, highly affecting both society 
and environment (IPCC, 2014a). One of the impacts to 
the environment is that of the changing in climate. The 
projected change of climate system done by IPCC 
(2014b) predicted that the global surface temperature 
at the end of 21st century would likely exceed 1.5 ˚C 
relative to the 1850-1900 average temperature and has 
a high probability to exceed 4.0 ˚C as well, in one of 
their projection scenarios. Evidences are showing that 
with climate change comes changing rainfall pattern 
and snow/ice melts, which resulted from a changing 
hydrological system and affecting water sources in 
term of quality and quantity. All these outcomes affirm 
that the projection of future climate can no longer be 
based solely on the statistical analysis of historical 
records alone, but instead the climate change factors 
should be included in the prediction of futuristic 
weather. Climate change assessment generally deals 
with global Green House Gas (GHG) emissions. In the 
IPCC Third Assessment Report (TAR), the Special 
Report on Emissions Scenarios (SRES) was 
introduced as a report that describes the GHG emission 
scenarios. It was later superseded by the 
Representative Concentration Pathways (RCPs), 
which are the four GHG concentration trajectories 
employed by the IPCC Fifth Assessment Report (AR5) 
namely RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5. 
Corresponding to the current CO2 concentration of 
about 400 ppm (IPCC, 2014b), the RCP 8.5 scenario 
where the world’s GHG emissions continue to increase 
resulting in CO2 concentration exceeding 900 part per 
million (ppm) by 2100 is the prime focus for this study.  

General Circulation Models (GCMs), or 
sometimes referred as Global Climate Models, are 

important tools to describe and simulate the 
components of the climate system and their interaction 
with each other. More than that, these models are able 
to estimate the response of climate system under 
changing GHG emissions in the future, which can be 
used for future drought risk assessment (Burke at al., 
2006). However, the coarse spatial resolution of GCMs 
about 250km is impractical for direct usage in the 
regional study of hydrology. Thus, a process of 
downscaling is necessary to generate higher resolution 
localized data from the coarse global climate 
projection. In the past few decades, many downscaling 
methods have been proposed and tested. They can be 
identified into the dynamical downscaling and the 
statistical downscaling categories (Mearns et al., 1999). 
The first approach is a model-based methodology 
where the output from the GCM is used to drive a 
regional climate model (RCM) in higher spatial 
resolution. The statistical downscaling on the other 
hand assumes that the local climate is a function of two 
factors: the large-scale climate state and regional 
physiographic features. Compared to dynamical 
downscaling, statistical downscaling directly relates 
the GCM output to impact-relevant variable without 
the necessity of simulation by climate models. This 
allows the users to have flexibility in monitoring the 
parameters and creating appropriate functions based on 
their professional analysis.  

Malaysia, as every other country, is 
inevitably undergoing the process of climate change. 
In addition, future increment of average annual air 
temperature for the country was reported to be 0.5°C-
1.0°C up to 2030, and further to 0.9°C -1.6°C up to 
2050 (MESTECC, 2018). Hence, the main objective 
of this study is to develop drought indices using 
rainfall and temperature statistically downscaled 
from the second generation Canadian Earth System 
Model (CanESM2) under the Representative 
Concentration Pathway (RCP) 8.5 using the 
Statistical Downscaling Model (SDSM) version 4.2.9, 
followed by analysing the frequency and severity of 
future drought events under climate change in 2021-
2050 for the Langat River Basin, a fast-growing 
urbanized region in Selangor, Malaysia. According to 
the study done by Amirabadizadeh et al. (2015), the 
basin was identified to start experiencing increasing 
trends of both rainfall and temperature since year 
2000. The basin is also projected to have increasing 
rainfall and temperature in the future 
(Amirabadizadeh et al., 2017). Hence, SPEI was 
selected in this study to consider both hydrological 
(rainfall) and ecological (potential evapotranspiration, 
PET) variables, and represents different types of 
drought with its multi-scalar characteristic (Fung et 
al., 2018). The SPEI was constructed using observed 
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(1976-2011) data and projected downscaled (2021-
2050) rainfall and temperature. As for the benchmark 
index, the well-known index SPI was included for 
comparison purposes. Incidentally, the SPI is the only 
drought index currently being used by the authorities 
in Malaysia to monitor drought (MetMalaysia, 2014).  

 
2. METHODOLOGY 

 
The observed rainfall was used to establish 

baseline SPIs, while baseline SPEIs were established 
using both observed rainfall and temperature data, to 
identify drought events from 1976 to 2011 (36 years) 
for the study area. These observed rainfall and 
temperature data were also used in conjunction with 
other large-scale data such as the National Centers for 
Environmental Prediction - National Center for 
Atmospheric Research (NCEP-NCAR) and General 
Circulation Model (GCM) data in downscaling RCP 
8.5 future rainfall for examining future drought 
events using SPI and SPEI.  
 

2.1. Study area 
 

The Langat River Basin in the state of Selangor, 
Malaysia has a total catchment area of about 1,815 
km2, formed by 15 sub-basins which lie within 
latitudes 2˚40’15” N to 3˚16’15” N and longitudes 
101˚19’20” E to 102˚1’10” E. This basin is a fast-
growing region in this country in terms of rapid 
urbanization, new build-up areas, modern road 
network, industrialization and agricultural expansion. 
Unavoidably, the basin is subject to dire 
consequences of land use and land cover changes, 
pollution stress, forest fragmentation and depletion of 
ecosystem. These posed numerous challenges to 
sustainable development. Under such circumstances, 
the implementation of a best suited drought index on 
future climate outlook was deemed necessary. The 
rainfall data from station 3818110 at Sekolah 
Kebangsaan Kampung Sungai Lui (3°10'25"N, 
101°52'20"E, 91.0 m above sea level) and the 
temperature record from station 48648 at Petaling 
Jaya (3°06'00"N, 101°39'00"E, 45.7 m above sea 
level), were used to represent the Langat River Basin. 
These stations were selected due to the proximity to 
the Langat Reservoir and the Semenyih Reservoir. 
The 36 years of rainfall data was tested for 
homogeneity prior to study adoption.   

 
2.2. General Circulation Model and 
downscaled data 
 
The second generation Canadian Earth System 

Model, CanESM2 Model from Canadian Centre for 

Climate Modelling and Analysis (CCCMA) was 
chosen as a sole GCM output used for generating 
future rainfall in Langat River Basin. This model 
employed T63 triangular truncations with spatial 
resolution of 128 x 64 and 35 vertical layers (Arora & 
Boer, 2014). In this study, Representative 
Concentration Pathway 8.5 W/ m2 was chosen rather 
than the ‘peak-and-decline’ scenario (RCP 2.6) or 
‘stabilization’ scenario (RCP 4.5 and RCP 6.0). The 
decision was made due to the assumption that the 
GHG emissions will continue to rise according to 
current trends. The goal of study was to project future 
drought based on the continuity of the present level of 
CO2 emissions, which is very likely to happen as no 
significant strategies of GHG reduction are in place. 
In addition to the GCM data, the National Centers for 
Environmental Prediction - National Center for 
Atmospheric Research (NCEP-NCAR) Reanalysis 
data was another set of large-scale data used in the 
downscaling model to establish the statistical 
relationship with observed station data. This Global 
Reanalysis Model has a resolution of about 210 km 
horizontally and 28 levels vertically (Kalnay et al., 
1996). Given the advantage that statistical 
downscaling directly relates the GCM output to 
impact-relevant variable and allows the users to have 
flexible monitoring on the parameters and creating 
appropriate functions based on professional analysis, 
the Statistical Downscaling Model (SDSM) version 
4.2.9 developed by Wilby and Dawson (2013) was 
the downscaling model for this study. In addition, it 
showed high capability in capturing wet-spells and 
dry spells length in one of the studies carried out in 
Langat River Basin (Amirabadizadeh et al., 2016).  
 

2.3. Computation of Standard Precipitation 
Index (SPI) 
 

For the prediction of future drought events, two 
parts of the SPI computation were carried out. For the 
first part, SPI was computed according to the observed 
rainfall from 1976-2011 (36 years of data). The Gamma 
distribution function was chosen to describe the rainfall 
in Peninsular Malaysia. This probability distribution 
function is similar to the method first proposed by 
McKee et al. (1993) in their research for the 
computation of SPI and its suitability was reaffirmed by 
Sharma and Singh (2010) for the description of rainfall 
during monsoon seasons. After that, the function was 
further normalized and standardized to obtain the SPI 
value. In other words, the SPI value is a z-score of the 
distribution function which represents a deviation event 
from the mean of historical rainfall data. 

The second part is the computation of the 
futuristic SPI, which has the same procedures as part 
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one but carried out using the generated rainfall from 
2021 to 2050. Another difference is the SPI value at this 
part was computed according to the rainfall distribution 
established in part one (year 1976 to 2011). In other 
words, the future rainfalls were used to compare with 
the mean and standard deviation of historical rainfall to 
generate SPI value. This decision was made with the 
consideration of a comprehensive way to present the 
deviated rainfall event according to the current scenario. 
It is noteworthy that the downscaled rainfall from GCM 
only consists of 365 days per year, the 29th February of 
leap year was assumed to have the same rainfall as on 
the 28th February in the drought index computation of 
this study. 

One of the advantages of the SPI is the flexibility 
in choosing its time scale. This research focuses on SPI-
1, SPI-3 and SPI-6, which are the 1-, 3- and 6-month 
time scale values, to represent meteorological, 
agricultural and hydrological droughts (WMO, 2012). 
The current drought monitoring practice in Malaysia is 
also adopting these time scales (MetMalaysia, 2014). 
The calculation of the SPI values follows the method 
proposed by Asadi et al. (2014). The drought 
classification of SPI values is classified by certain 
ranges. Mild drought occurs when the SPI values fall 
between 0 to -0.99, moderate drought when -1.00 to -
1.49 and severe drought between -1.5 to -1.99. When the 
SPI values fall below -2.00, it indicates an extreme 
drought event. 

 
2.4. Computation of Standard Precipitation 

Evapotranspiration Index (SPEI) 
 

Like the SPI computation, the SPEI baseline was 
generated first. The downscaled climate data was fed 
into the established baseline to generate the future SPEI. 
The three parameters log logistic distribution function 
was chosen to describe the ‘climatic water balance’, 
which is the initial value in SPEI computation, rather 
than the rainfall in SPI and this ‘climatic water balance’ 
is defined as the monthly difference between 
precipitation and the potential evapotranspiration (PET). 
This probability distribution function is like the method 
first proposed by Vicente-Serrano et al. (2010) in their 
research for the computation of SPEI. After that, the 
function was normalized and standardized to obtain the 
SPEI value. It is a standardized variable and thus readily 
to be compared with SPI and other SPEI values across 
time and space. The computation of future SPEI was 
same as SPI’s. The downscaled climate data from year 
2021 to 2050 was fed into established SPEI baseline to 
generate future values. The detailed calculation of SPEI 
values can be found in Vicente-Serrano et al. (2010). 
Like SPI, SPEI-1, SPEI-3 and SPEI-6 were computed to 
represents time scales of 1-, 3- and 6-month. 

 
2.5. Drought characteristics and trends 

 
To investigate the changes in drought between 

1976-2011 and 2021-2050, drought characteristics of 
the two periods have been quantified into drought 
frequency, mean drought duration and mean drought 
severity in this study. The drought frequency is the 
number of drought events that had occurred at the 
station; mean drought duration is the average time span 
of every drought event throughout a period, and mean 
drought severity is the average drought indices values. 
The detailed procedures to obtain the aforementioned 
drought characteristics can be found in Guo et al. (2018). 
Trend analyses were also carried out in our study to 
investigate the changes in trend throughout the two 
periods and the changes of trend between the two 
periods. With reference to Teegavarapu (2019), the 
Mann-Kendall/Seasonal Mann-Kendall trend tests are 
nonparametric tests that are commonly used for 
assessment of trends in hydrological time-series. They 
indicate the existence of an upward or downward 
monotonic trend in the data. According to Huang et al. 
(2014), there is no seasonal variation in monthly and 
seasonal rainfall series of Langat River Basin. Hence, 
Mann-Kendall trend test was chosen over Seasonal 
Mann-Kendall trend test. Thereafter, Theil Sen’s Slope 
was adopted to measure the magnitude of the trend 
detected by Mann-Kendall test.  
 

3. RESULTS AND DISCUSSION 
 
3.1. Statistical rainfall and temperature 

downscaling  
 
The list of selected predictor variables, their 
correlation coefficient and the significance level for 
both station 3818102 and station 48648 are given in 
Table 1. For the selection of predictors, the significant 
level is set to be 10%, which means the p-value more 
than 0.1 should be rejected. The predictor selection 
for station 3818102 was done by adopting the results 
from Huang et al. (2016) and predictors namely 
1000hPa relative vorticity of wind, 850hPa 
divergence of true wind, 850hPa specific humidity 
and mean sea level pressure were selected to 
downscale rainfall data. As for station 48648, the 
results from Table 1 show that all the predictors 
selected fulfilled the requirement of p-value less than 
0.1. Hence, 1000hPa zonal wind component, 850hPa 
zonal wind component, 850hPa divergence of true 
wind, total precipitation and air temperature at 2m 
were selected as the predictor variables for 
temperature downscaling purpose. 
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Table 1. Screening results 
Predictand Predictors Description of Predictor Partial r P-value 
Precipitation  
(3118102) 

p1_zgl (lag 5) 1000hPa Relative vorticity of wind 0.033 0.0712 
p8zhgl (lag 1) 850hPa Divergence of true wind -0.045 0.0138 
s850gl 850hPa Specific humidity 0.042 0.0201 
mslpgl Mean sea level pressure 0.019 0.2842 

Mean Temperature 
(48648) 

p1_ugl  1000hPa Zonal wind component -0.203 < 0.001 
p8_ugl (lag 2) 850hPa Zonal wind component 0.157 < 0.001 
p8zhgl  850hPa Divergence of true wind 0.101 < 0.001 
prcpgl  (lag -1) Total precipitation -0.213 < 0.001 
tempgl Air temperature at 2m 0.419 < 0.001 

 
The results of validation are shown in Table 

2. The well-known methods to measure estimation 
accuracy namely the coefficient of correlation 
(CORR), root mean square error (RMSE) and mean 
absolute percentage error (MAPE) procedures were 
computed from monthly average of generated data 
and observed data from the model. In general, the 
relationship of selected predictors and predictand at 
the rainfall station is weaker compared to the results 
at the temperature station. Furthermore, with smaller 
scale of variations in the temperature series, the 
learning process for multiple linear regression in 
SDSM is easier.  Thus, the validation results showed 
higher accuracy in temperature downscaling 
compared to rainfall downscaling.  

 
Table 2. Result of Downscaling Validation 

 Predictand CORR RMSE MAPE 
Precipitation 
(3118102) 0.871 1.42 33.12% 

Temperature 
(48648) 0.976 0.16 0.50% 

 
For the purpose of this study, the use of the 

monthly average to represent the data was deemed to 
be adequate as the outputs of downscaling would be 
used in monthly accumulation instead of daily time 
block when computing drought indices. Therefore, 
the validation results were accepted. On the other 
hand, a higher correlation in validation of daily data 
does not necessary indicate a high accuracy of future 
prediction as it is highly dependent on the General 
Circulation Model used as well.  
 

3.2. Projected climate change 
 

The projected climate data from SDSM 
downscaling, which ranges from 2021 to 2050 was 
referred to as the futuristic period while the climate 
data from 1976 to 2011 was referred to as the baseline 
period. The average monthly rainfall and mean 

temperature of each time periods were computed and 
compared.  

 

 
Figure 1. Projected average daily rainfall 

 

 
Figure 2. Projected average daily mean temperature 

 
According to Figure 1, the projected futuristic 

average daily rainfall deviates from the baseline period. 
The projected average daily rainfall of most of the 
months have increased in 2021-2050, except for March 
and April. The largest rainfall increase was shown in 
September, with the difference of 119% from baseline 
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period. As for March and April, the average daily 
rainfall decreased by 13% and 15%, respectively. 
Overall, the deviation in the first half of the years are 
small but from June onwards, there are significant 
increases of average daily rainfall for 2021-2050. 

The projected average daily mean temperature 
is shown in Figure 2. The projected temperatures have 
a consistent trend, which showed that all the months 
will experience escalations in 2021-2050. The highest 
escalation was projected to happen in November 
2021-2050 with the increment of 1.00°C, an increase 
of approximately 3.74 % when compared to the 
records from 1976-2011.  

 
3.3. Baseline drought indices  

 
Theoretically, the period of data used could affect 

the outputs of drought indices due to the variation in 
distribution represented by this selected sample. Daily 
rainfall and daily mean temperature record of 36 years 
(from year 1976 to year 2011) were used in the 
establishment of baseline indices. The constructed 

baseline SPIs and SPEIs are shown in Figure 3 (Parts A 
and B), respectively. Based on the figures, they showed 
that the recorded severe drought events in 1977, 1987, 
and 1997 (Pandey et al., 2007) were successfully 
reflected by both indices. This affirms the performance 
creditability of the three indices in describing drought. 

 
3.4. Projected drought indices  

 
Drought indices for three different time scales 

were computed according to the projected climate 
under RCP 8.5 scenario and are shown in Figure 4, 
Figure 5 and Figure 6. Rainfall and PET are two 
prime factors affecting the drought events. From 
these three figures, it can be seen that the fluctuation 
of each SPI aligns well with their respective 
cumulative rainfall amount, so as the computation of 
SPI relies solely on rainfall. The interpretations of 
SPEIs must refer to the PET in addition to rainfall and 
hence, high PET value generally resulted in large 
differences between SPEI and SPI.  

 

 

 
Figure 3. Baseline drought indices SPI (Part A) and SPEI (Part B) for years 1976-2011 
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Table 3 also shows that the difference (mean 
absolute difference, MAD) between SPI and SPEI has 
increased and coefficient of correlation has decreased in 
2021-2050 when compared to 1976-2011. According to 
WMO (2012), SPI is not suitable for climate change 
analysis because temperature is not an input parameter 
in the evaluation of SPI. However, the projected 
temperatures in 2021-2050 will increase up to 1.00 ˚C 
(Section 3.2). Hence, SPEI that takes both 
simultaneously, rainfall and PET into consideration will 
differ from SPI and the differences will increase in 
2021-2050, where climate change is projected. Thus, 
SPEI is better in describing droughts under climate 
change in the future and especially when the PET is high.  

 
Table 3. Correlation and Measure of Difference between 
SPI and SPEI under different time scales and period 

Period 
CORR    MAD 

1-
Month 

3-
Month 

6-
Month 

   1-
Month 

3-
Month 

6-
Month 

1976-
2011 0.87 0.86 0.81 

   

0.42 0.43 0.51 
2021-
2050 0.80 0.63 0.62 

   
0.59 0.54 0.50 

 
Apart from the above, the figures also showed 

that the differences increased when time scales of the 
drought indices increased. According to WMO (2012), 
the increases of time scales in SPI/SPEI can be used to 
define different type of droughts. For time scale of 1-, 3- 
and 6-month, they can be used to define meteorological, 
agricultural and hydrological droughts respectively. 
This proposed classification is justified by the average 
required response time for soil moisture conditions, 
groundwater, streamflow and reservoir storage to reflect 
the effect from precipitation anomalies. Hence, for 

longer time scales, the departures between SPI and SPEI 
increased due to SPEI’s higher capacity to define 
agricultural and hydrological droughts by considering 
PET.  

From the results presented above, SPI can be 
used to define droughts when climate change doesn’t 
come into action. However, when climate change 
occurs or when users’ objectives are to define non-
meteorological droughts, SPEI seems to be a better 
option. These provide an insight on the selection of 
proper parameters that should be considered in 
drought identification and drought indices 
classification during different conditions. 

 
3.5. Drought characteristics and trends  

 
The Mann-Kendall trend test and Sen’s Slope 

test were carried out for the periods 1976-2011 and 
2021-2050 for both indices. The tests were carried out 
with null hypothesis of no trend in the series, while the 
alternative hypothesis assumed otherwise. The 
significance level was set to be 1% to reject the null 
hypothesis. Based on the trend analysis in Table 4, it 
can be seen that for both indices in 1976-2011 and 
2021-2050, the drought severity gave positive trend. In 
addition, the summarised drought characteristics also 
showed potentially less drought occurrence and 
severity in 2021-2050 (Table 5). For the baseline 
period 1976-2011, the results are compatible with the 
finding of increasing rainfall trend in the basin 
(Palizdan et al., 2013, 2015, 2016), which will cause 
the tendency of drought index to be positive. As for 
period 2021-2050, the results reflect an overall 
increasing rainfall in the projected future climate 
(Section 3.2). These reveal that the likelihood of a 
drought event in the Langat River Basin is decreasing 

 

 
Figure 4. Comparison of projected drought indices (1-month) of year 2021-2050 under AR5 RCP 8.5 scenario with 

projected rainfall and PET 
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Figure 5. Comparison of projected drought indices (3-month) of year 2021-2050 under AR5 RCP 8.5 scenario with 

projected rainfall and PET 
 

 
Figure 6. Comparison of projected drought indices (6-month) of year 2021-2050 under AR5 RCP 8.5 scenario with 

projected rainfall and PET 
 

Table 4. Drought Trends 
Trend 

Analysis 
1976-2011 2021-2050 

SPI-1 SPI-3 SPI-6 SPEI-1 SPEI-3 SPEI-6 SPI-1 SPI-3 SPI-6 SPEI-1 SPEI-3 SPEI-6 

Mann-
Kendall 
trend 
test 

Result Reject 
Ho 

Reject 
Ho 

Reject 
Ho 

Reject 
Ho 

Reject 
Ho 

Reject 
Ho 

Reject 
Ho 

Reject 
Ho 

Reject 
Ho 

Reject 
Ho 

Reject 
Ho 

Reject 
Ho 

Z- 
Value 

2.71 
(Upwa

rd) 

2.19 
(Upwar

d) 

2.11 
(Upwar

d) 

1.81 
(Upwar

d) 

1.46 
(Upwar

d) 

1.43 
(Upwar

d) 

2.68 
(Upwar

d) 

3.03 
(Upwar

d) 

3.21 
(Upwar

d) 

2.36 
(Upwar

d) 

2.39 
(Upwar

d) 

2.18 
(Upwar

d) 
Sen's Slope 0.016 0.021 0.023 0.011 0.015 0.019 0.007 0.012 0.015 0.007 0.012 0.015 

 
for both periods 1976-2011 and 2021-2050 according 
to current situation. However, when the magnitude of 
the trend is considered, it was shown that the 
magnitude of increasing trend in 2021-2050 has 
decreased compared to in 1976-2011. This may be due 
to the projected increasing temperature in 2021-2050. 
However, the rainfall is also increasing in 2021-2050. 

Thus, the Mann-Kendall trend test results are still 
showing positive upward trend but with gentler slope 
indicated by the lower values in the Sen’s Slope test 
results, giving the evidence that temperature is playing 
an important role in formation of future droughts. 

In general, the occurrence of drought event can 
be attributed to low rainfall and/or high PET. In this 
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Table 5. Drought Characteristics 

Drought Characteristics 
 SPI-1 SPI-3 SPI-6 
 1976-2011 2021-2050 1976-2011 2021-2050 1976-2011 2021-2050 

Drought Frequency  93 56 38 37 23 21 
Mean Drought Duration  1.97 1.89 4.37 3.24 7.78 5.29 
Mean Drought Severity  -0.83 -0.39 -0.92 -0.34 -0.87 -0.29 

Drought Characteristics  SPEI-1 SPEI-3 SPEI-6 
 1976-2011 2021-2050 1976-2011 2021-2050 1976-2011 2021-2050 

Drought Frequency  90 72 47 40 31 25 
Mean Drought Duration  2.29 2.22 4.53 4.73 6.71 8.80 
Mean Drought Severity  -1.06 -0.77 -1.04 -0.80 -1.06 -0.79 
 
study area, the drought tends to decrease in term of 
occurrence while the rainfall and PET increase under 
RCP 8.5 scenario. The drought in the Langat River 
Basin is believed to be driven by rainfall, yet PET 
should not be ignored to avoid the underestimation of 
drought. Hence, SPEI shall be considered to monitor 
and assess droughts over SPI. 

 
4. CONCLUSIONS 

 
Drought is one of the damaging yet difficult to 

define natural calamity. Contrary to popular belief that 
high annual rainfall in a tropical country could always 
be counted on to provide the more than sufficient water 
resources, this is no longer holds true since drought is 
frequently happening, especially with the onslaught of 
climate change with the much anticipated 
environmental consequences. Drought monitoring is 
becoming crucial and using drought indices serves as 
an important base. Drought indices computed from 
forecasted rainfall and daily temperature give a better 
outlook of the potential risk and uncertainty. The usage 
of the SDSM in future rainfall and temperature 
downscaling is deemed to be sufficient for drought 
index computation although the rainfall generation 
might not provide accurate data. The baselines 
comparison between the SPI and the SPEI suggests 
that both indices are correlated to a certain extent. 
However, the SPEI performs better in the sense of less 
likelihood of the index to underestimate the drought 
severity. In this study, climate change and alteration of 
rainfall and daily temperature patterns have been 
detected at the Langat River Basin. Generally, the 
rainfall amount and daily temperature increases in 
future under RCP 8.5 scenario at this basin. A positive 
trend of index value detected in both indices implies 
the occurrence of drought in coming future will be less 
likely and less severe. The drought indices in this study 
are for monitoring the evolution of a drought event. 
With the combination of future rainfall downscaled by 
SDMS, a framework of future drought event can be 
generated. This study also offers some insights for 

future drought planning and management practices.   
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