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Abstract: Inland excess water is a partly natural and partly human induced phenomenon where areas are flooded 
with water that cannot find its way gravitationally to rivers or channels. These inundations cause large financial 
and environmental damage in the flat regions of the Carpathian basin. To understand where and why the 
inundations occur can help to take preventive measures and to reduce loses. Inland excess water is caused by a 
complex and interrelated set of factors. To study these factors, a new approach using a combination of an 
artificial neural network (ANN) and a geographic information system (GIS) has been developed. This article 
presents and evaluates the results of this approach. The network is integrated in a workflow that starts and ends 
using multiple spatial data sets in a GIS. The intermediate steps – the training and simulation of the ANN – are 
performed using a mathematically modeling environment which is controlled from within the GIS. This 
framework allows for the flexible use of different spatial data sets and experimentation with the settings of the 
neural network. The training validation shows that the relief is the most important factor in the study area, while 
other factors like distances to anthropogenic objects are of less importance. The simulation results show that the 
ANN – GIS framework is capable of accurately identifying inland excess water floodings. 
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1. INTRODUCTION 

 
Due to its geographic position and climate, the 

Great Hungarian Plain is under continuous treat of 
droughts and floods. The year 2010 was one of the 
wettest years ever in Hungary. In the period October 
2009 – December 2010, 1149 mm of precipitation 
fell, which corresponds to a yearly precipitation of 
919 mm, while the long term average yearly 
precipitation is 489 mm (Vízügy 2011). The extreme 
precipitation caused exceptionally large areas to be 
flooded by inland excess water. The maximum total 
flooded area was 355 000 ha on December 9, 2010 
and the estimated financial damage to the agriculture 
exceeded 500 million Euros. Together with the 
consequential damage like soil degradation, inland 
excess water is one of the most severe natural 
hazards in the Carpathian basin (Ianos et al., 2009; 
Mezösi, 2011). To be able to prevent and remediate 
the inland excess water inundations and to 
understand why and where they occur, it is 

necessary to create accurate maps. Many, mainly 
Hungarian authors have presented methods to 
identify and/or forecast inland excess water with 
varying success (Bozán et al., 2009; Pálfai, 2004; 
Pásztor et al., 2006; Rakonczai et al., 2003). Most 
studies have tried to identify factors that cause 
inland excess water and combined them using 
regression functions or other linear statistical 
analysis. Disadvantages of these methods are that 
they presume that the input factors are normally 
distributed and that their importance has to be 
estimated based on expert knowledge or regression 
analysis which are only locally valid. A new 
approach using a combination of an artificial neural 
network (ANN) and a geographic information 
system (GIS) (Van Leeuwen et al., 2010) does not 
have these problems. This article will present and 
evaluate the results of this approach.  

ANNs have been proven themselves in many 
fields of science where complex data sets need to be 
analyzed to identify their underlying structures and 
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properties. Neural networks have a large potential for 
analysis of complex spatial problems which are 
common in geographic research (Hewitson & Crane, 
1994). The inland excess water inundations in the 
Carpathian basin are a prototype example of such a 
problem.  

A GIS is a computational system that 
combines a spatial database with a set of tools for 
spatial analyses. It offers flexible tools to create 
georeferenced maps and to analyze spatial 
distributions within and between them.  

 
2. INLAND EXCESS WATER 
IDENTIFICATION 

 
Inland excess water is a phenomenon that is the 

result of a complex set of natural and anthropogenic 
factors. When water originating from precipitation or 
snow melting can neither infiltrate in the soil, nor find its 
way gravitationally to rivers or channels, it remains on 
the surface. This type of inland excess water is referred 
to as accumulation inland excess water. The process 
causes large areas to become covered with a shallow 
layer of water. This usually takes place after the winter 
period due to snow melting and rainfall, but occasionally 
also occurs in summer or autumn. The floodings can 
have large economic, social and environmental effects. 
The second type of inland excess water is the upwelling 
type and is caused by the upwards push of groundwater. 
The vertical type occurs as groundwater flows from 
higher towards lower areas, where it appears on the 
surface by leakage through porous soils. This normally 
occurs at the edges of alluvial fans. The factors causing 
inland excess water are divers and interrelated. The most 
important factors are:  
(1) Relief. On the flat lands of the Carpathian basin, 
runoff possibilities are limited. Local depressions 
can collect water from a large area, without having 
the possibility to drain into rivers or channels.  
(2) Soil. Clayey soils have a low infiltration capacity 
due to their chemical or physical composition or due 
to intensive tillage (plow pan) (Kuti et al., 2006; 
Rakonczai et al., 2011).  
(3) Meteorology. Due to intensive rainfall or rainfall 
over a long period, large amounts of water need to 
infiltrate in the soil. Low temperatures result in low 
evaporation rates. Frozen soil completely prevents 
the infiltration of water. 
(4) Anthropological factors. Human influence on 
inland excess water is large. On one hand, build up 
areas may reduce the infiltration capacity of the soil, 
and structures like highways may block natural runoff. 
On the other hand, channels and other hydrological 
structures reduce the change of inland excess water. 

There are two methods to estimate the spatial 

and temporal distribution of inland excess water. The 
first method calculates the spatial and temporal 
distribution based on field or remotely sensed 
observations (in situ mapping). The second estimates 
the vulnerability to inland excess water based on a 
limited set of factors (vulnerability mapping). 
Systematic mapping of inland excess water has been 
executed since the 1940s. In earlier days, this could 
only be done by in situ observation of the inundations 
and drawing them on 1:10 000 and 1: 25 000 
topographic base maps. In situ inland excess water 
maps have been created systematically by the regional 
water directorates in Hungary. This type of 
observations is time consuming and error prone due to 
differences in observation methods and quality. An 
inland excess water patch does not have a clear 
boundary, because the soil surrounding it is normally 
saturated with water. Due to its swampy nature, it is 
very difficult to measure every inland excess water 
patch individually in the field. 

With the appearance of publically available 
remote sensing data, like aerial and spaceborne 
imagery and the development of image processing 
techniques, the in situ observations were 
complemented and inland excess water could be 
identified and classified in a more efficient and 
effective way (Rakonczai et al., 2003). A disadvantage 
of most remote sensing acquisition techniques is that 
they are dependent on good weather, and inland excess 
water is often occurring during periods with lots of 
precipitation. Also the dynamic nature of the floodings 
causes problems. Especially spaceborne remote sensors 
have a limited revisiting time, which may result in 
inaccurate measurements of inland excess water 
because the flooded area may have reduced in size or 
disappeared already by the time the satellite passed 
over the area. The vegetation cover may further reduce 
the usability of remote sensing data. 

Vulnerability mapping of inland excess water is 
traditionally executed by selecting a limited set of 
factors causing the floodings and by weighing those 
using coefficients that are derived experimentally. The 
weights of the coefficients are adapted to match earlier 
observations or are based on expert knowledge. The 
weights are different for every geographical area and 
therefore need to be re-estimated for every region. Many 
authors have calculated inland excess water 
vulnerability maps based on such a limited set of factors 
like relief, soil, groundwater, precipitation etcetera 
(Bozán et al., 2009; Pálfai, 2003; Pásztor et al., 2006).  

 
3. ARTIFICIAL NEURAL NETWORKS 

 
Artificial neural networks are computational 

models that are mimicking the functioning of the human 
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brain (Hewitson & Crane, 1994). They are 
computational mechanisms that are able to acquire, 
represent, and compute a mapping from one multivariate 
space of information to another, given a set of data 
representing that mapping (Atkinson & Tatnall, 1997). 
In this study, a two layer feed forward network with 
back propagation training was applied. This is one of the 
most commonly used neural networks for classification 
problems (Demuth et al., 2010; Pradhan & Lee, 2010). 
In the network, every neuron processes the weighted 
sum of all inputs, and – via a so-called nonlinear 
activation function – it is determined if the signal is send 
further to a next layer of neurons. During the first phase 
of neural network modeling, input data and associated 
output data are fed to the network. An iterative process 
then adapts the weights in order to find their optimal 
values. The optimal values are reached when the total 
error between the calculated and the expected results is 
minimal. This is the trained status of the network 
(Hagen et al., 1996). 

During the second phase of the ANN modeling, 
new input data is fed to the trained model and output 
results are generated. The quality of the result of this 
simulation is directly dependent on the quality of the 
training. If the training data set does not cover the same 
variation of input combinations as the simulation data 
set, poor output results may occur. Similarly, if the 
training has occurred in such a way, that the trained 
network can only generate results if the training input 
and the simulation input are the same or very similar, 
over training has occurred. This leads to poor results 
when a new simulation data set is fed to the network. 

The artificial neural network approach has many 
advantages compared to other statistical methods. First, 
it is independent on the statistical distribution of the data, 
and there is no need for specific statistical variables. 
Neural networks allow the target classes to be defined in 
relation to their distribution in the corresponding domain 
of each data source, and therefore the integration of 
remote sensing and GIS data is very convenient 
(Pradhan & Lee, 2010). Furthermore, ANNs are capable 
of incorporating uncertainty, incomplete data, incorrect 
sampling, multicollinearity between variables, spatial or 
temporal autocorrelation, or the insignificance of single 
variables (Bishop, 1995; Yang & Rosenbaum, 2001; 
Zhou, 1999), which are all common in geographic 
analysis, but especially in inland excess water research 
due to the fuzzy nature of the boundaries of the 
inundations, and the complex interrelations between the 
factors that cause inland excess water. 

 
4. DATA AND METHODS 

 
To develop and test the ANN – GIS approach, 

data from a 20 km2 large test area was collected and 

processed. The area is located in the south of the 
Great Hungarian Plain (Fig. 1) between the Tisza 
and Maros rivers. The relative relief energy is low, 
approximately 1.86 m/km2 including artificial 
structures like dikes and roads. 

 

 
Figure 1. The study area and its surroundings. 
 

Table 1. Base data for the ANN – GIS approach. 
Light Detection 
And Ranging 
(LIDAR) DEM 

LIDAR data with a spatial 
resolution of 1.4 points per m2 
were collected from a 70 km2 area 
during a flight campaign in 
November 2009. Based on this 
data, a digital elevation model was 
created. 

Color infra-red 
digital aerial 
photographs 

At the maximum of the inland 
excess water periods, in March and 
June 2010, flights were executed 
using a data collection system 
based on a MS3100 digital camera 
to collect 860 x 640 meter images. 
From all individual images a 
mosaic covering an area of 60 km2 

was created.  
Soil map The 1:100 000 Agrotopo soil map 

was digitized and converted to 
raster format. 

Anthropogenic 
objects 

Channels, roads, buildings and oil 
wells were digitized based on the 
1:10 000 topographic map, the 
LIDAR based digital elevation 
model and color aerial 
photographs. 

Field measure-
ments 

In March 2010, a fieldwork was 
carried out in the south-western 
part of the study area. At that 
moment, the second level on the 
national inland excess water 
hazard scale was valid in the area. 

 
Mainly agricultural activity is taking place in 

the area, but there are also many oil stations from the 
Hungarian oil company. The soils in the area show 
extreme mechanical properties: in large areas, the 
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plasticity index according to Arany (KA) is above 
60. The exceptionally bad permeability 
characteristics combined with the very flat terrain 
with large local depressions result in high 
vulnerability to inland excess water accumulation.  

Five different base data sources were 
compiled and preprocesses in the GIS and 
transformed to input data (Table 1). 

From the five data sets, 9 input layers and 1 
output layer were derived and used in the 
framework: 
(1) LIDAR measurements: At the start of the winter, 
while vegetation activity was minimal, but without 
the land being covered with snow, a combined 
LIDAR – digital aerial photography flight campaign 
was executed. At the same time of the LIDAR 
measurements, visual and near infrared digital 
images were acquired with a DMC camera. In the 
post-processing phase, 3D vectors of linear features 
were digitized from the images using stereo-
photogrammical techniques and these were then 
incorporated in the interpolation of the LIDAR data. 
In this way, a digital elevation model (DEM) with a 
spatial resolution of 1 meter and a vertical accuracy 
of 15 centimeter was created (Szatmári et al., 2011). 
Based on this high resolution DEM, the drainage 
pattern was derived and local depressions were 
calculated. The depression map was reclassified into 
three depth classes: very small (<15 cm), medium 
(15-60 cm) and deep depressions (>60 cm). These 
classes are based on the accuracy of the digital 
elevation model and observations of inland excess 
water in the field. In the very flat terrain of the study 
area, areas that are more than 60 cm lower than the 
direct surroundings are ditches, channels and rivers. 
These should not be considered inland excess water. 
The areas with depressions less than 15 centimeters 
deep are part of the uncertainty of the elevation 
model. They may also be real, but then they are 
normally smaller puddles from where water can 
evaporate in a short period of time. The areas with 
depression between 15 and 60 centimeter deep are 
considered to be areas were inland excess water 
formation can occur. 
(2) Color infrared digital aerial imagery: During 
different periods of large inland excess water 
inundations, flight campaigns were organized to 
collect data using an in-house developed system for 
small format aerial photography (van Leeuwen et al., 
2009a; van Leeuwen et al., 2009b; Tobak et al., 
2008). Images were collected with a spatial 
resolution of 62 centimeter from a flying height of 
2000 meter and from the green, red and near infrared 
part of the electromagnetic spectrum. The three 

bands were used as single separate layers in the 
framework.  
(3) The Agrotopo soil map (Agrotopo, 2002) was 
digitized and converted to raster format. Variations 
in the soil types are very limited. All three soil 
classes in the study area are characterized by poor 
permeability and a low infiltration rate. 
(4) Anthropogenic objects: Based on different 
sources – objects built by humans that could 
influence the formation of inland excess water – 
were digitized. From these layers four distance maps 
were created, storing the distances between every 
pixel and the closest anthropogenic object. 
(5) Fieldwork: During the spring inland excess water 
period of 2010, in situ measurements were taken 
from the inundated fields by walking around them 
with hand-held GPS receivers and collecting their 
perimeter. In total 7.8 ha of inundated land was 
measured with an accuracy of 2 – 5 meter. 

To facilitate the efficient application of 
classification of inland excess water occurrences by 
artificial neural networks, an integrated GIS – ANN 
framework was created using a combination of the 
ArcGIS geographic information system, Matlab 
mathematical modeling software and Python, an 
open source programming language (van Leeuwen 
et al., 2010, Fig. 2). ArcGIS was chosen because it 
has strong geoprocessing capabilities. It also can be 
used to call external Python scripts, that are needed 
to connect the GIS to the ANN. Matlab was selected 
because of its extended Neural Network toolbox 
(Demuth et al., 2010) and because it can handle very 
large data sets. It is also possible to call and run 
Matlab in the background using Python scripts. 

 

 
Figure 2. The framework showing the traing and 

simulation workflow from ArcGIS via Python to Matlab, 
and back. 

 
The analysis of inland excess water with the 

framework is executed in several sequential steps 
(Fig. 2). First, the input data is pre-processed using 
the GIS. Here, general geoprocessing tasks are 
executed to generate data of the correct spatial 

176 



extent, with proper coordinates. Subsequently, using 
a custom made dialog in the GIS, the neural network 
is initiated in Matlab. Then, after conversions and 
data reduction, the network is trained using a 
training data set which is a subset of the complete 
data set, and a target data set. Once the network has 
reached its optimal state, it is saved and a message is 
send to the GIS that the network is ready for the 
simulation phase. In the simulation phase, new data 
is fed into the trained network using a dialog within 
the GIS. The simulation result is converted and 
georeferenced so it can be read into the GIS. Finally, 
the simulation results can be used for visualization 
and further analysis within the GIS.  
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Performance problems occur due to the nature 
of spatial data sets and the neural network method. 
Spatial data sets are multiple grids of large numbers 
of rows and columns. During the inland excess water 
simulations, very high resolution data is used, 
resulting in large amounts of data. Furthermore, the 
iterative process to train the network to find the 
optimum value for the weights for each neuron is 
calculation intensive. To reduce the performance 
problems, a data reduction factor was introduced. 
With this factor, only a selection of the total amount 
of data is used as input data. An additional 
advantage of the data reduction factor is that over-
training of the network – when the network becomes 
too specialized to find general patterns in the data –
is prevented. 
 

4. RESULTS 
 
Many experiments were executed to 

determine the best settings for the neural network, to 
evaluate the contribution of the individual layers to 
the solution and to estimate the overall success of 
the method. Earlier test with small data sets with just 
4 input layers and simpler neural networks showed 
that the framework can be applied to calculate inland 
excess inundations (van Leeuwen et al., 2010). 
Additional data layers and more complex networks 
improved the classification results. Here, the most 
relevant results are presented. 

A feed forward network with 20 hidden 
neurons that was trained with 8 input layers of an area 
of about 1000 x 1000 meter gave the best overall 
results. The weights of the network were randomly 
initialized, resulting in slight changes in the starting 
conditions of each training. The initialization that 
resulted in the best training mean square error was 
selected to be used in the simulation phase. The 
trained neural network was used for simulation in a 
new area slightly to the north of the training area. 
This way the factors that are responsible for the 

formations of inland excess water play a similar role 
in both the training and simulation. Figure 3 shows 
the results of the training and simulation. 

 

 

Figure 3. The simulation result for a network with 20 
neurons in the hidden layer and 8 input layers. 
 
The yellow areas were classified as inland 

excess water. The network was trained with the 
follwoing 8 input layers: the three bands of the aerial 
photograph, the classified local depressions map and 
the four distance to anthropogenic object maps. This 
resulted in a 93% accuracy of the training.. Figure 3 
shows that in the north and northwest part of the 
simulation area the results are corresponding with 
the ground truth. The open water along the levee (in 
the northwest) was also detected. The large inland 
excess water area (in the north-northeast) was 
smaller in reality. The inland excess water in the 
south part of the images is not properly classified. 
Some pixels are correctly indicated as inland excess 
water but the majority is classified as dry land. The 
errors are probably due to the composition of the 
training set, where only water was incorporated but 
saturated soil and vegetation in water were omitted. 

Four experiments were executed to evaluate 
the influence of the different input layers. Each 
experiment was executed with a different set of input 
layers, but with the same neural network consisting of 
20 hidden neurons. To reduce the amount of data and 
to prevent running out of memory, the data reduction 
factor was set to 2 and Matlab’s internal memory 
reduction factor (Demuth et al., 2010) was set to 3 in 
each simulation. The input layers are given in table 2. 
These simulations have been performed on data from 
the training area only, since only there, it is possible 
to compare the results with ground truth data. 



 
Figure 4. Evaluation of the input layers. All results cover the same area at the same scale. 

 
Table 2 Input data for training and simulations on the 

training area. 
 Description 
1 Local depressions 
2 Agrotopo soil characteristics 
3 Distance from channels 
4 Distance from roads 
5 Distance from oil wells 
6 Distance from buildings 
7 Aerial photograph band 1 
8 Aerial photograph band 2 
9 Aerial photograph band 3 

 
The first simulation is only based on the CIR 

images and the local depressions. The second also 

incorporated the distances to channels, the third 
simulation incorporates 8 input layers, only soil was 
excluded. The final simulation included all 9 input 
layers. The output maps of the four simulations are 
shown in figure 4. 

The result of the simulation with only the 
color infrared images and the local depressions as 
input data shows a lot of the inland excess water 
pixels at the east part of the output map (A). It is 
unclear why in these places inundations show up. 
These areas are only partly characterized by local 
depressions. On the CIR images, they do not look 
much different from other areas either. During the 
fieldwork, they were not characterized as flooded 
areas. The overall accuracy of this classification is 
88%. 
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Table 3. Spatial correlations between 9 input layers (1 – 9), the training layer and four simulation results (A - D). 
 

 A B C D train 1 2 3 4 5 6 7 8 9 
A 1.00 0.91 0.83 0.83 0.76b -0.79 0.07 -0.30 0.14 0.13 0.06 0.23 0.02 0.04 
B 0.91 1.00 0.91 0.91 0.83c -0.73 0.06 -0.44 0.11 0.14 0.03 0.22 0.02 0.04 
C 0.83 0.91 1.00 0.99 0.92e -0.66 0.09 -0.40 0.18 0.17 0.11 0.19 0.02 0.03 
D 0.83 0.91 0.99 1.00 0.92f -0.66 0.09 -0.40 0.18 0.17 0.11 0.19 0.02 0.03 

train 0.76 0.83 0.92 0.92 1.00 -0.59a 0.08 -0.37 0.16 0.16 0.09 0.18 0.02 0.03 
1 -0.79 -0.73 -0.66 -0.66 -0.59 1.00 -0.05 0.19 -0.10 -0.06 -0.05 -0.12 -0.09 -0.12 
2 0.07 0.06 0.09 0.09 0.08g -0.05 1.00 0.28 0.46 0.33 0.34 0.03 -0.06 -0.06 
3 -0.30 -0.44 -0.40 -0.40 -0.37d 0.19 0.28 1.00 0.27 0.07 0.31 -0.23 0.01 -0.02 
4 0.14 0.11 0.18 0.18 0.16 -0.10 0.46 0.27 1.00 0.14 0.71 0.03 -0.07 -0.05 
5 0.13 0.14 0.17 0.17 0.16 -0.06 0.33 0.07 0.14 1.00 -0.03 0.05 -0.01 -0.04 
6 0.06 0.03 0.11 0.11 0.09 -0.05 0.34 0.31 0.71 -0.03 1.00 0.04 -0.11 -0.05 
7 0.23 0.22 0.19 0.19 0.18 -0.12 0.03 -0.23 0.03 0.05 0.04 1.00 -0.13 0.26 
8 0.02 0.02 0.02 0.02 0.02 -0.09 -0.06 0.01 -0.07 -0.01 -0.11 -0.13 1.00 0.63 
9 0.04 0.04 0.03 0.03 0.03 -0.12 -0.06 -0.02 -0.05 -0.04 -0.05 0.26 0.63 1.00 

 
The second simulation (B), with an overall 

accuracy of 91%, clearly shows a triangular shape 
from the central inland excess water area towards the 
west. This is an artificial area resulting from the 
Distance to channels map. The third simulation (C) 
incorporates all input layers except for the soil map. 
Its inland excess water pixels completely overlap with 
the fieldwork area, but identify also quite some 
inundations between the buildings in the southern part 
of the test area. This is a pig farm which was in use 
during the inland excess water period and was not 
suffering from any flooding. This training result had 
an overall accuracy of 93% and was used for the 
simulation shown in figure 3. The fourth simulation 
(D) incorporates all input layers. Its overall accuracy 
is 91% which is slightly lower than the result without 
the soil layer. The result looks very similar to the 
third simulation and the additional effect of the soil 
layer is not clear. This should be contributed to the 
lack of variation in infiltration characteristics between 
the three soil classes in the area. 

The spatial correlations between the different 
input layers and output results show which layers play 
an important role in the simulation and which layers 
are less important (Table 3). The first simulation 
result clearly shows the depressions in the area (Fig. 
4 A). These depressions have a correlation of -0.59 
with the fieldwork data (Table 3. a). This correlation 
is negative because the depression classes range from 
no depression to deep depression and the inland 
excess water ranges from inland excess water to no 
inland excess water. The relatively high value shows 
that the relief has a strong influence on the formation 
of inland excess water. The spatial correlation 
between the simulation and the fieldwork data is 0.76 

(Table 3.b). If the layer with distances from channels 
is added to the simulation the correlation increases to 
0.83 (Table 3.c). There exists a correlation between 
the individual channel distance layer and the 
fieldwork data although it is not very high: 0.37 
(Table 3.d). If 8 layers are used in the simulation, the 
correlation further increases to 0.92 (Table 3.e), 
although the correlation between the individual layers 
(distances maps, and CIR bands) and the fieldwork 
data is low. Adding the soil input layers to the 
simulation does not result in a higher correlation 
(Table 3.f). The limited influence of the soil in the 
simulations in this study area is also reflected in the 
low spatial correlation (0.08) between the fieldwork 
data and the soil map (Table 3.g). 
 

5. CONCLUSIONS 
 

The artificial neural network – Geographic 
information system framework is capable of 
identifying inland excess water. It also allows for the 
flexible adaptation of the network parameters, which 
makes it an efficient environment to test different 
settings for the neural networks. Optimization 
parameters have been incorporated to improve its 
computational efficiency and to prevent the 
calculations to run out of memory. It was found that 
in this study area relief has a very important 
influence, while the influence of the soil is small, 
because of its the limited variation. If distance to 
anthropogenic objects is included in the training and 
simulation, the results improve. The distance to 
channels is the most influential anthropogenic factor. 
Overall, a very high correlation exists between the 
simulation output results and the fieldwork data. 
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Future research aims to extend the study area to 
other parts of the Carpathian basin, where different 
types of inland excess water occur and where 
different factors influence its formation. 
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