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Abstract: The potential of AI to process and interpret large volumes of data can provide researchers with a 
powerful tool to understand and monitor biodiversity on a global scale. In this paper we aimed to identify 
dominant individual plant species in natural protected habitats. Mapping the dominant species from the 
targeted natural habitats was followed by testing machine learning algorithm for differentiating similar species 
using satellite images. In the end we validated the data generated by machine learning algorithms through 
extensive field observations. Using the Sentinel-2 mission 10m resolution data and comprehensive field 
mapping we managed to see different phenology variations between diverse types of plant communities. Using 
the NDVI and NDII vegetation indexes and Random Forest algorithm during the dominant species phenology 
stages for each consecutive 10-day periods between May 1st and September 10th, revealed distinct responses 
to climate fluctuations and environmental factors. The natural habitats different signatures are strongly 
influenced by their ecological and conservation status and are not yet suitable for identification, but could help 
improve AI’s automatic detection for multiannual analysis if a favorable conservation trend is reached. The 
main achievement of the proposed methodology is the ability to differentiate between different species of 
deciduous trees, with machine learning training accuracy generally exceeding 95% and classification accuracy 
surpassing 90%. 
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1. INTRODUCTION 
 

The potential of AI to help protect biodiversity 
is enormous. AI's ability to process and interpret large 
volumes of data can provide researchers with a 
powerful tool to understand and monitor biodiversity 
on a global scale. However, exploiting this potential is 
not without difficulties. From technical issues such as 
data quality and resolution to implementation and 
ethical issues, the use of AI in the study of biodiversity 
involves a number of complex challenges. We aim to 
make a significant contribution to understanding these 
issues by exploring how AI can be used to assess 
species biodiversity and identifying the main obstacles 
and difficulties that arise in this process. 

Apart from governmental and regional agencies 
and private economic agents, a number of universities 
and research institutes have addressed the topic of 

satellite image interpretation algorithms for the purpose 
of finding the ecological indicators of vegetation. 

Virtanen et al., (2004), succeeded in identifying 
vegetation types in northwestern Russia by associating 
data collected in the field with 30m cells of satellite 
images. Images from different dates were then 
spectrally standardized by multitemporal relative 
calibration using first- or second-order linear regression 
equations for each channel. Regression equations were 
calculated for the pixel data values taken from the 
overlapping areas of the images. Calibration rectangles, 
blocks of pixels whose values were used to calculate the 
calibration equations, were chosen from deep water, 
coniferous forests (low near-infrared values), and rocky 
sites to avoid seasonal bias effects. 

Rapinel, et al., (2014), on the Atlantic coast of 
France confirmed 526 points identified in the field with 
the images produced by Worldview 2. The points were 
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selected in squares of homogeneous vegetation (15 x 
15 m) and recorded with a GPS (horizontal accuracy 
<2 m). The classification approach was based on 
automatic processing combining pixel and object-
based classification methods. As a first step, a pixel-
based supervised classification of the 8 spectral bands 
using only spectral information was applied. and in a 
second step, this classification was improved by 
making an object based on classified objects that 
integrates contextual, shape and texture criteria. 

In conclusion, there have been few studies 
reporting both the identification of plant species in the 
field and the mapping of natural vegetation from 
remote sensing data. 

In recent years, there has been an increase in 
research using algorithms on satellite images with a high 
spatial resolution, to completely replace traveling in the 
field, most of them being focused on neural networks 
(neural networks) and deep learning (deep learning). 

Watanabe et al., (2020), suggest that the CNN 
(convolutional neural networks) technique and the 
cropped image method would be powerful tools for 
high-precision image-based vegetation mapping and 
show immense potential for reducing the efforts and 
costs needed for vegetation mapping. 

Liu, et al., (2021), in northeastern China, used 
the DeepLabV3 Plus neural network to prove the 
impact of spatial resolution and spectral bands of 
remote sensing images on the classification accuracy 
of marsh vegetation. 

The project "Biodiversity estimation using 
satellite images" coordinated by ETH Zürich 
University aims to automate the estimation of 
biodiversity in Switzerland, using machine learning 
(deep) and satellite images. By combining prompt 
and high-quality in situ data from Swiss institutions 
such as BLW, Agroscope, BAFU and WSL, which 
have been conducting field surveys with dense, large-
scale satellite imagery for decades. The first 
experiments showed that the spectral resolution of the 
ESA Sentinel-2 satellites, designed for vegetation 
monitoring, partially allows the recognition of plant 
species on the ground. This project aims to directly 
map the distributions of distinct species and 
biodiversity in Switzerland to help protect the 
environment and measure the impact of agriculture on 
biodiversity (ETH Zurich, 2023). 

The current trend is to improve the NDVI 
index, sometimes creating methods such as 
conditional generative adversarial network (cGAN) 
to simulate the NIR band from RGB bands of 
Sentinel-2 multispectral data (Yuan et al., 2023) 

In recent months, high-precision models have 
been increasingly proposed, such as a workflow for 
using high-resolution satellite time series (Rapid Eye, 

Planet Scope) to assess spatially consistent vegetation 
patterns and their relationship with soil characteristics 
at the field scale (Mohr et al., 2023). 

The assessment of ecological status in a territory 
combines several indices such as Normalized 
Differential Vegetation Index (NDVI), humidity 
(UMED), Normalized Differential Accumulation Index 
and Bare Soil Index (NDBSI) and Land Surface 
Temperature (LST) resulting in the ecological index of 
remote sensing (RSEI) to quantitatively assess changes 
in the ecological environment (Wang, et al., 2023). 

Also, an ecological status assessment but 
transformed into a public database was carried out as 
well as a multitemporal data set at the protected area 
level characterizing the spatial patterns and temporal 
dynamics of ecosystem functioning in the Sierra 
Nevada Biosphere Reserve (Spain), captured by the 
Enhanced Spectral Vegetation Index (EVI, using the 
MOD13Q1.006 product from the MODIS sensor) 
from 2001 to 2018. The database holds, on an annual 
scale, a synthetic map of three-attribute Ecosystem 
Functional Type (EFT) classes ecosystem functions 
(EFAs): descriptors of annual primary production, 
seasonality and phenology of carbon gains. It also 
includes two indices of ecosystem functional diversity 
derived from the above datasets: EFT richness and 
EFT rarity (Cazorla, et al., 2023). 

In this paper we aimed to identify dominant 
individual plant species in natural protected habitats, 
by using Sentinel-2 free images and indices trough AI 
trainings and extensive field mapping, in order to 
provide a tool for biodiversity conservation.  

The objectives of the paper are:  
(a) mapping of the dominant species from the 

targeted natural habitats;  
b) testing the machine learning algorithm for 

differentiating similar species using satellite images);  
(c) using the indices to validate the data 

generated by machine learning algorithms. 
The main challenge of this study was to try to 

differentiate similar tree species (such as Quercus 
robur and Quercus petraea) as recent studies show 
that it is not possible to differentiate between forest 
types with different dominant tree species, because 
some assembled species can generate similar NDVI 
values or similar NDVI temporal trends (D’Andrea et 
al, 2022). A recent study found differences between 
the genera Pinus and Quercus, possibly related to the 
physiological features of the species and their 
phenology (Gallardo-Salazar et al, 2023), indicating 
that similar species cannot be separated using NDVI. 
 

2. STUDY AREA 
 

This study was conducted in an area 
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surrounding Baia Mare City (Figure 1) with various 
habitat types and different plant communities. It 
includes a mountainous area in the north, which 
diminishes into a plain one in the south (Figure 2-A). 
The slopes vary from 0 to 450 (Figure 2-B) while the 
Natura 2000 protected areas cover large areas (Figure 
2-C). The land use shows the presence of constructed 
areas mainly in the south (in and around Baia Mare City) 
while forests cover most of study area (Figure 2-D). 

The study area falls into the type of temperate 
- continental climate with oceanic influences. 
According to the Köppen classification, the studied 
area falls under the climate type Dfb (Beck, et al., 
2018), where D corresponds to the continental 
climate (in which the temperature of the coldest 
month is less than 00C and the temperature of the 
hottest month exceeds 100C), f corresponds to 
precipitation uniformly distributed throughout the 
year (without a dry season) and b – the average 
temperature of the hottest month is below 220C and at 
least 4 months of the year have an average 

temperature higher than 100C (Peel, et al., 2007). 
 

Figure 1. Study area location map 
 
 

 

Figure 2. (A- Elevation map, B – Slope map, C Aspect map, D – CORINE Land Cover map) 
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3. MATERIALS AND METHODS 
 
3.1. Vegetation mapping 
 
The field trips took place during the vegetative 

periods of 2022 and 2023, for mapping habitats or for 
validating algorithm data. Even though at first, we 
started mapping a larger area, we eventually 
considered only the study area as it had the best 
satellite coverage (Figure 3). 

The main methods for mapping the plant 
communities involve satellite images identification of 
sizable and uniform vegetation patches, field trips to 
the selected areas where we used the transect and 
quadrant methods. Basically, the transect method was 
used to cross large areas in search of homogenous 
vegetation patterns. Once reached we used the 
quadrant method to map the species distribution 
inside a 20/20 meters area. The size of the area varied 
between 10/10m (to match the size of the satellite 
image pixel) and 50/50m for combined habitats.  

 
Figure 3. Mapped study area 

 
In this article, the main species we analyzed are 

dominant species in their habitat (Council Directive 
92/43/EEC): Quercus petraea (sessile oak) – in 9170 
Galio-Carpinetum oak-hornbeam forests, Quercus 
robur (oak) – in 9160 Sub-Atlantic and medio-
European oak, Rhynchospora sp. – in 7150 
Depressions on peat substrates of the Rhynchosporion 
and Vaccinium myrtillus (European blueberry) – in 
4060 Alpine and Boreal heaths. 

The best phenology intervals for satellite 
readings were determined by the best vegetation 
period, species richness and biomass extent (Figure 
4). These intervals do not denote the entire vegetation 
period, but the intervals where satellite readings 
would differentiate better similar species. 

 
Figure 4. The best phenological intervals for satellite 

readings in selected habitats 
 

3.2 Satellite indices 
 
Sentinel-2 free images from the 2018-2023 

period with a resolution of 10m/pixel were used for 
land use assessment. To achieve frequent revisits and 
high mission availability, two identical Sentinel-2 
satellites (Sentinel-2A and Sentinel-2B) work 
together. The satellites are phased 180 degrees from 
each other on the same orbit. This allows for what 
would be a 10-day revisit cycle to be completed in 5 
days (ESA, 2023). The available free data has far less 
readable images, as cloud cover in the study area is 
higher than 40% in the vegetated season. 

The following indices have been found useful 
for Sentinel-2 data processing and land use 
identification: PSRI (Plant Senescence Reflectance 
Index), NDVI (Normalized Difference Vegetation 
Index), NDII (Normalized Difference Infrared Index), 
EVI (Enhanced Vegetation Index), ARI-1 & ARI-2 
(Anthocyanin Reflectance Index), MCARI (Modified 
Chlorophyll Absorption in Reflectance Index) and 
NDBI (Normalized Difference Built-Up Index). All of 
the above were tried and tested on all the mapped areas, 
constantly trying to differentiate the similar species. 
 

3.3 Data analysis 
 
It is important to decide which set of metrics 

are effective by method when using machine learning 
techniques. In a previous experimental study, the 
performance of seven popular techniques including 
Logistic Regression, K-nearest Neighbors, Decision 
Tree, Random Forest, I Bayes, Support Vector 
Machine and Multilayer Perceptron using software 
metrics from Promise repository dataset usage were 
evaluated, experimental results showing that Support 
Vector Machine achieves a higher performance in 
class-level datasets and Multilayer Perception 
produces a better accuracy in method-level datasets 
among seven techniques above (Phuong Ha, 2019). 

In this study, five machine learning algorithms 
were implemented: K-nearest Neighbors, Random 
Forest, Naive Bayes, Support Vector Machine and 
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Multilayer Perceptron. Comparative tests of 
classification quality were performed on the same 
data sets with the algorithm change. 

 
4. RESULTS 
 
A series of algorithm trainings were conducted 

using the biodiversity information to extract the 
values for the main indices identified as useful in the 
evaluation of the vegetation species. 

Initially, training was conducted on a single 10-
day period, and the classification results were modest, 
as follows: 
- For the assessment of land use in the same 
10-day period – incredibly superior results, with an 
accuracy above 90%. 
- For land use assessment in another closed 
period (+- 10 days) acceptable results (60-70% 
correctly found areas).  
- For the evaluation of land use in another 
more distant 10-day period, or in another year (even 
in the same period), accuracy was below 30%. 

Identification of plant species in the study area, 
with training and classifications performed on the 
same data set, at various times, raises problems about 
the consistency of the classification. Although the 
learning process is performed in a unitary way, on 
distinct calendar days, the classification performs 
significantly better on certain calendar dates than on 
others. The use of the 10-day period and afterwards, 
consecutive 10-day periods during the vegetative 
season (May 1st to September 10th), strongly 
improved the end results. Here training accuracy 
generally exceeds 95% and classification accuracy 
for the same calendar year exceeds 90%. 

 
4.1. Vegetation indices 
 
NDWI and NDBI were found to be rather 

confusing and lower the quality of the results. Also, 

multiple species were identified with similar evolutions 
of the main vegetation indices (NDVI, PSRI, EVI), 
leading to a high degree of confusion between them.  

Experimentally, the MCARI and ARI2 indices 
were found to be good discriminators between most 
of these species, which is why they were used in 
combination with the main indices, ensuring best 
results. The main problem of MCARI and ARI2 is 
that they are not normalized indices, there are 
situations where certain abnormal or exceptional 
values reduce the quality of the classifications. 

Although the accuracy in ideal situations is 
better by using the two indices, for the elimination of 
anomalies and better results on the general case, they 
have been replaced by NDII.  

It was found that a best effort / data volume / 
processing speed ratio is obtained by using NDVI+NDII, 
which is sufficient for most average classifications 
(Figure 5). While de NDVI normalizes green leaf 
scattering in Near Infra-red wavelengths with chlorophyll 
absorption in red wavelengths (NDVI, 2023) and it is 
more commonly used for measuring vegetation density 
and photosynthetic activity, the NDII is sensitive to 
changes in water content of plant canopies, with values 
that raise with increasing water content (NDII, 2023) 
being more sensitive to water content in vegetation and is 
used to monitor water stress in plants, soil moisture, and 
drought periods (Sriwongsitanon et al., 2016). 
 

4.2. Machine learning algorithms 
 
The Random Forrest algorithm results are clearly 

superior to other algorithms. The random forest model 
has been proved to be the best model in predicting some 
key plant parameters (Tian & Fu, 2022). 

Multilayer Perceptron and Naive Bayes cannot 
manage missing values for training. K-nearest 
Neighbors and Support Vector Machine give 
comparable but significantly inferior results to 
Random Forrest. 

Figure 5. 10-day periods of the vegetative stages, along the index’s values   
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The chosen implementations can manage 
missing values themselves. An attempt was made to 
complete / generate the missing values, but the results 
were inferior to those with “no data”. 
 

4.3. Machine learning results 
 
Each training is producing a land use 

classification for each day for the selected vegetation 
indexes, producing a 10/10m resolution raster file 
(Figure 6).  

 
Figure 6. 10/10m resolution land use raster file 

 
The data contained in each pixel can be 

exported as a csv file for each 10-day period of the 
vegetative period, along the index’s values (Figure 5). 

Furthermore, averaging all the pixels of a 
species for all the 10-day periods can give us a better 
view of the index’s variation throughout the plant’s 

phenology trough NDVI (Figure 7) and plants water 
content trough NDII (Figure 8). 

The combination between NDVI and NDII 
indices gives a more precise correlation between plant 
phenology and water content variations (Figure 9) 

For better data reading, a 6-degree polynomial 
trendline was used as the polynomial curvilinear 
trendline works well for large data sets with 
oscillating values that have more hills and valleys. 
The R-squared trendline shows better correlation in 
the combined NDVI-NDII dataset. 
 The challenging separation between Quercus 
robur and Quercus petraea is slightly visible at the 
beginning of the phenology period where the 
precipitation amount is higher, with clearer 
differentiation in the middle of summer, where 
drought periods are more often.  
 

4.4. Selected habitats conservation status 
 
The latest assessment of the EEA (2023) shows 

that habitats and species protected under the EU 
Habitats Directive have a predominantly unfavorable 
conservation status at 81% for habitats. The infield 
evaluation of the selected habitats is as follows: 

• 9170 Galio-Carpinetum oak-hornbeam 
forests. The on-site analysis of oak and hornbeam 
forests, conducted for algorithm training purposes, has 
revealed an unfavorable and inadequate conservation 
status of these stands. The inadequate conservation 
status, marked by deficient compositional and 
structural parameters, is attributed to pronounced 
anthropogenic interferences. The anthropogenic 
impact of the past century, manifested through 
extensive clear-cutting of plots followed by trunk 

Figure 7. Index variation throughout the plant’s phenology trough NDVI 
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Figure 8. Plant water content variation trough NDII index 

Figure 9. The combination between NDVI and NDII  
 
regenerations, is now reflected in a shift in the ratio of 
dominant species, favoring hornbeam and 
disadvantaging oak. In addition to the change in the 
proportion of dominants, the forests lack a natural 
structure, with a reduced age distribution of trees; the 
entire population belongs to the same age group, 
lacking proper stratification and, consequently, optimal 
space occupancy. This results in the underutilization of 
resources within the ecosystem. In conclusion, the 

stands are characterized by a diminished number of 
characteristic species, a deficit in spatial architecture 
with few tree strata, and, consequently, a modification 
of crown density and distribution, directly impacting 
the leaf indices analyzed by algorithms. 

• 9160 Sub-Atlantic and medio-European oak. 
Oak forests with a mixture of turkey oak, located on 
generally flat and low-lying terrain near human 
communities, exhibit indices of specific and structural 
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diversity characteristic of anthropized ecosystems. 
Management through intensive exploitation of the 
forests, including occasional complete removal of the 
entire tree canopy, has resulted in the regeneration 
process not restoring structural and functional 
parameters to their initial levels. The presence of a 
single tree stratum, instead of 3-4, generates a different 
pattern of cohesion and crown distribution. It has also 
been observed that the two analyzed forest habitats, 
9170 and 9160, although having different dominant 
species - sessile oak and pedunculate oak, respectively, 
with hornbeam as a mixed species for both - tend to 
homogenize under the consecutive regeneration 
pressures of strong anthropogenic influence. This 
homogenization is marked by the simplification of 
floristic composition and structural parameters. 

• 7150 Depressions on peat substrates of the 
Rhynchosporion and Vaccinium myrtillus. 
Oligotrophic marshes have a distinct configuration 
compared to other types of regional habitats, 
characterized by substrate features on one hand and a 
complex of strongly acidophilic species on the other. 
Structurally, the peat layers accumulate large amounts 
of water, exhibit low floristic diversity, but 
photosynthetic indices depend significantly on the 
amount of bound water. This accumulated water in 
the abiotic part of the peatland is contingent upon the 
variation in the hydric regime throughout the year and 
the seasons. Monitoring oligotrophic marshes 
indicates a reduction in the amount of bound water, 
affecting the color and viability of the moss layer. 

• 4060 Alpine and Boreal heaths. Blueberries 
and cranberries shrublands are plant formations that 
depend on substrate acidity, as well as on a thermal and 
hydric regime characteristic of high-altitude and 
subalpine mountain zones. Their conservation status in 
the analyzed areas is generally favorable, with the 
component species remaining unaffected. However, 
their surfaces are shrinking, both due to anthropogenic 
exploitation and global warming and aridification. 
 

4.5. Data validation 
 
For validation of algorithm predicted results 

we followed the location of large predicted dominant 
species with mapping of adjacent species. For 
example, Quercus robur was predicted by algorithm 
classification (yellow color) in a forest east of Baia 
Mare City (Figure 10). Alongside the correctly 
recognized species we also identified Carpinus 
betulus (brown color), which is a characteristic 
species for the 9160 Sub-Atlantic and medio-
European oak habitats. Even though the spatial 
presence of hornbeam is spread out with small clumps 
of trees, it is correctly recognized in algorithm 

classification and its presence is a valuable indicator 
for habitat’s identification. The other identified 
species are not characteristic of the above-mentioned 
habitat, showing that its conservation status is 
inadequate.  

 

 
Figure 10. Confirmed presence of Quercus robur (yellow 

color) and Carpinus betulus (brown color) 
 

5. DISCUSSION  
 

Identifying plant communities at one stage of 
their phenological cycle using machine learning on 
Sentinel-2 10m pixel images is a straightforward task, 
with quite impressive results (Languille et al., 2017). 
Nevertheless, the challenge of this study was to show 
the same plant communities on each reading on 
satellite images all throughout their phenological 
year. Weather variations, varied species, phenological 
mismatch, conservation status and the ubiquitous 
cloud cover on satellite images, make the algorithm 
classification results vary vastly over the 
phenological cycles.  

The fact that most of the analyzed plant 
communities belong to a not so large study area 
supports the idea that all of them had to adapt to the 
same environmental variations, hence their response 
becomes the only variable. The different plants’ 
response to all the above-mentioned fluctuations 
gives a very distinct signature only when we analyze 
individual species that are dominant for large areas. 
Different forest types and tree species differ in their 
vegetation phenology, offering an opportunity to map 
and characterize forests based on the seasonal 
dynamic of vegetation indices and auxiliary data 
(Silveira et al., 2022, Han et al., 2023). 

The results of this case study cannot be used as 
such in other areas, as different phenology responses 
will occur in different conditions of climate, 
geomorphology or habitats conservation status. But 
the proposed methodology, of using NDVI and NDII 
on the free Sentinel-2 satellite images could be used 
to clearly separate similar species of trees in protected 
habitats. 

The NDVI/NDII average lines graphs show 
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different individual signatures (profiles) of the four 
plant species, which could prove valuable in 
identifying patterns in future years, as the type of 
response to climate variations and water content tends 
to be the same per species. Although species richness 
can be an informative measure of diversity, plant 
communities are dynamic systems under constant 
change (Aggemyr et al., 2018). 

The mixture of species present in these four 
habitats could supply a habitat identification 
technique by averaging all the pixels from that 
specific area, only if a constant or favorable 
conservation status is reached. 

We highlight first the inherent complexity of 
the process of species identification in the sphere of 
biodiversity. The difficulties met are much more 
substantial than were initially foreseen, given several 
factors of a variable nature. We see that the 
multiannual evolution of the species is divergent, 
even in the case of perennial species, depending on 
the weather and climate peculiarities. 

Unfortunately, areas with very high 
biodiversity values are extremely rare, almost non-
existent. The mixture of species in natural habitats 
further complicates the classification process, 
because even on a relatively small area, such as a 10 
x 10-meter (1 pixel) Sentinel-2 plot, we can find a 
multitude of species. 

One of the main challenges with the data is the 
small amount of data available, rarely exists imagery 
available for every 10-day period, often there are few 
points of intersection between the data, especially if 
trying to classify on a year other than the training year 
(Figure 11). 

 

 
Figure 11. Data availability for every 10-day period 

 
Despite these difficulties, a superior quality of 

the classifications of natural forest and marshy areas, 
meadows, with a good mapping of vegetation species, 
both in the lowlands and in the highlands, is found. 

Machine learning (ML) algorithms have been 
increasingly used in biodiversity studies due to their 
ability to analyze large datasets and identify patterns 
that may not be easily discernible through traditional 
methods (Shivaprakash et al., 2022). Within our 
activities, a series of machine learning algorithm 
trainings were conducted using biodiversity 
information to extract the values for the main indices 
useful in the evaluation of dominant species.  

Similarities were found in the value of the 
indices, in certain periods for certain types of forests.  

Ultimately, a relevant barrier to using free ESA 
data is image resolution. Practitioners have requested 
the use of higher resolution data. One of the main 
problems is that Copernicus images only supply a 
general view of areas of interest but are insufficient 
for detailed analysis. In this context, activity-relevant 
Sentinel-2 satellite indices were also evaluated. 

 
6. CONCLUSIONS 

 
The main achievement of the proposed 

methodology is the ability to differentiate between 
different species of deciduous tree species. For 
biodiversity purposes, it could prove useful to be able 
to differentiate the yearly change in species percent 
cover.  

This study supplies a comprehensive 
understanding of the challenges and potential 
solutions in using artificial intelligence algorithms for 
biodiversity assessment. Despite the difficulties, the 
way is being outlined for future improvements by 
continuing to investigate the factors that influence 
species classification and by adapting AI algorithm 
training methodologies. 

Using the NDVI and NDII vegetation index 
and Random Forest algorithm during the plant’s 
vegetation season for each consecutive 10-day 
periods between May 1st and September 10th, 
revealed dominant species different responses to 
weather variations, with the machine learning training 
accuracy generally exceeding 95% and classification 
accuracy surpassing 90%.  

The plant communities’ different signatures are 
not yet suitable for algorithm classification as the 
natural habitat’s conservation status is gradually 
shifting to the point of unreliable multiannual 
identification. Maintaining or improving the 
favorable conservation status of natural habitats could 
help improve algorithm classification of natural 
habitats for multiannual analysis. 
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