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Abstract: The paper presents the use of satellite imagery, GIS applications and in-situ measurements for 
the estimation of water transparency in reservoirs. Satellite data from the Sentinel-2 sensor and interpolation 
methods (Kriging, IDW, Natural Neighbour, Spline, Trend) were used for Secchi Disk Transparency 
(SDT). The results of this study show that the Sentinel-2 blue/red band ratio is a reliable predictor of SDT 
with the coefficient of determination equal to 0.83 (p< 0.001). The analysis indicates low coefficients of 
determination between the SDT calculated using interpolation methods based on GIS and in-situ 
measurements. The SDT modelled on the basis of satellite imagery was further used to indicate parts of the 
reservoir characterized by the highest uncertainty. The high uncertainty occurs near the shoreline of the 
reservoir and near the dam, which might be related to spectral reflectance from wooded areas, the 
overgrowth process or small depth of water. Additionally, it was observed that the highest uncertainty 
associated with the applied individual regression occurs in the case of limit values of the B2/B4 ratio which 
were not used during regression model development. The results show that more than 91% of the reservoir 
is characterized by a standard deviation less than 0.2, while only 0.25% shows values higher than 0.5. The 
results indicate that the application of remote sensing has important significance for water transparency 
estimation in reservoirs. 
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1. INTRODUCTION 
 
Lakes, reservoirs and ponds are among the most 

important components of the Earth’s natural resources, 
especially as they provide the largest volume of surface 
freshwater for human use (Kim et al., 2019; Pekel et 
al., 2016; Zhang et al., 2017). Due to various factors 
connected with human activity (Dąbrowska et al., 
2016; Bogdał et al., 2015; Borek, 2018), reservoir 
parameters (Dąbrowska et al., 2018) and climate 
changes (Soundharajan et al., 2016; Yan et al., 2018), 
inland waters are increasingly exposed to changes in 
water quality, including water clarity and 
eutrophication. The aquatic environment is 
characterized by high temporal and spatial variability 
(Policht-Latawiec et al., 2014), especially due to the 
high impact of climate parameters (air temperature, 
precipitation). According to Dąbrowska et al., (2016), 
spatial variability of water quality parameters also 
depends on anthropogenic pressures such as 
agricultural activities or waste-water management in 

the catchment. Due to the large number of factors 
influencing inland water parameters, it is necessary to 
find an interpolation method which will take into 
account the local variation of water quality. 

One of the most frequently used parameters to 
assess water quality is water transparency, measured 
on the basis of the Secchi disk (Lee et al., 2015; 
Philippart et al., 2013). Secchi disk transparency 
(SDT) is defined as a depth when a white and black 
disk with a diameter equal to 0.3 m is no longer visible 
to an observer. Measurements of SDT have been used 
in many studies (Fleming-Lehtinen & Laamanen, 
2012; Nishijima et al., 2016; Zhou et al., 2018) to 
determine the eutrophic state and ecological status. 
Traditional monitoring of water quality parameters is 
determined by in-situ measurements and laboratory 
analyses (Bus & Mosiej, 2018; Sender et al., 2018; Xu 
et al., 2017). Collecting samples from the field ensures 
high accuracy of the data in single locations. 
Unfortunately, analyzing numerous samples from the 
field is a time-consuming and expensive process 
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(Cavalli et al., 2009; Hestir et al., 2015). Moreover, in-
situ measurements provide information limited only to 
point-based representation and do not give a spatial 
overview of water bodies (Odermatt et al., 2012; 
Zhengjun et al., 2008).  

In the past few decades, with development of 
GIS applications, computer techniques became the 
most powerful tools for mapping spatial and temporal 
changes in the environment. In-situ measurements are 
used for applying interpolation methods, which create 
continuous surfaces on the basis of discrete points 
(Bhunia et al., 2016; Gong et al., 2014; Liang et al., 
2018; Shen et al., 2019). Interpolation methods allow 
values to be predicted for the whole area where the 
measurement has not been taken. The most commonly 
used interpolation techniques are Kriging, Inverse 
Distance Weighting (IDW), Natural Neighbour, Spline 
and Trend methods (ESRI, 2012). However, there is no 
single reference interpolation method that produces the 
most reliable results.  

Nowadays, remote sensing offers the most 
valuable opportunities in Earth monitoring, especially 
due to the unique advantage of effective and reliable 
mapping of the environment from space (Chawira et 
al., 2013; Dlamini et al., 2016; Dörnhöfer et al., 2018b; 
Jaskuła et al., 2018; Majozi et al., 2014; Martins et al., 
2018). Since the last decade, free satellite imagery 
(Landsat, MERIS, MODIS, Sentinel missions) has 
increasingly changed the possibilities of water 
monitoring. Long-term collection of high-quality data 
is necessary to understand, better manage and mitigate 
the impact of climate changes on the environment and 
civil safety (Aschbacher & Milagro-Pérez, 2012; 
Dörnhöfer et al., 2018a; Laurent et al., 2014). Satellite 
imagery is used for natural hazards, and agricultural 
and aquatic applications, mainly because of its multi-
spectral characteristics (Agutu et al., 2017). 
Additionally, spatial and time resolution of satellites 
makes it possible to observe areas of interest more 
precisely. Remote sensing data have been used in 
numerous studies to analyze the state of the aquatic 
environment (including water transparency and 
eutrophication) and additionally are used to build 
relationship with in-situ measurements. These 
relationships enable one to predict values at 
uncontrolled points (Giardino et al., 2001; Hicks et al., 
2013; Li et al., 2017; Shi et al., 2015). Most of the 
studies have focused on the relationship between 
Landsat imagery and in-situ measurements (Giardino 
et al., 2001; Hicks et al., 2013; Li et al., 2017; 
McCullough et al., 2012; Ren et al., 2018; Rodriguez 
et al., 2014; Sass et al., 2007). Since 2015 one of the 
most promising sources of data seems to have been the 
Sentinel mission, which is part of the Copernicus Earth 
Observation mission, previously known as Global 

Monitoring for Environment and Security (GMES). 
The GMES programme was developed for monitoring 
and dissemination of environmental and security 
information. The mission is financed by the European 
Union and managed by the European Space Agency 
(ESA). The main purpose of the Sentinel missions is to 
provide European policy makers, researchers and the 
public with up-to-date and accurate information about 
the state of the environment (Donlon et al., 2012).  

The primary objective of this study was to 
formulate and validate a practical method to estimate 
Secchi disk depth by combination of satellite and in-
situ measurements. The second purpose was to 
compare the capabilities of interpolation methods 
based on GIS applications and Sentinel-2 imagery for 
determining water transparency in reservoirs. 
Additionally, the authors attempted to determine the 
uncertainty of the selected interpolation method in 
different parts of the reservoir. The study assumes the 
following research hypothesis: satellite imagery allows 
more accurate assessment of the spatial variability of 
Secchi disk transparency than classical interpolation 
methods based on GIS.  
 

2. MATERIALS AND METHODS 
 
2.1. Study site 

 
Jezioro Kowalskie reservoir (52°28′39.781′′ N, 

17°9′49.022′′ E) is located in the centre of the Warta 
basin, the third biggest river in Poland (Fig. 1). The 
surface area of the reservoir is 203 ha and the total 
capacity 6.58 mln m3. Jezioro Kowalskie is a source of 
water for agricultural purposes, but also performs other 
functions, including flood reduction, maintenance of 
minimum acceptable flows and recreation (Sojka et al., 
2016). The reservoir has a two-stage construction, 
being split into two parts – the main and pre-dam 
reservoir, separated by an additional dam. The main 
reservoir has the same functions as an ordinary single-
part reservoir – it stores water for many purposes. The 
study area in this paper is mainly focused on the pre-
reservoir, which plays a specific role. The pre-reservoir 
is the smaller part and it is used to store sediments and 
limits the inflow of pollutants to the main part. The 
area of the pre-dam reservoir in Jezioro Kowalskie is 
40.4 ha and its capacity is 0.590 m m3. The mean depth 
of this part is 1.3 m while that of the main reservoir is 
3.68 m (Hydroprojekt, 2004). 

Due to the population and urbanization 
development in the last decades, the Jezioro Kowalskie 
catchment has suffered from intensive anthropogenic 
and agricultural pressure. According to the Regional 
Inspectorate of Environmental Protection in Poznań, 
the physicochemical state of the Główna river, which 
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inflows to Jezioro Kowalskie, was evaluated to below 
the ‘good’ class (Regional Inspectorate of 
Environmental Protection, 2016). It was mainly caused 
by high values of nitrogen and phosphorus 
compounds, whose concentrations vary from 7.5 to 28 
mg N.dm-3 with a mean of 17.2 mg N.dm-3 for total 
nitrogen and from 0.144 to 3.43 mg P.dm-3 with a mean 
of 1.607 mg P.dm-3 for total phosphorus. According to 
Sojka et al., (2017) these values significantly exceed 
permissible and dangerous levels determined for 
Jezioro Kowalskie on the basis of the Vollenweider 
model (1976) and could lead to eutrophication and a 
decrease of water transparency, especially in the pre-
dam zone which is characterized by a small depth and 
rapid increase of water temperature. 

 
2.2. Sample collection 
 
In this study, a total of 150 measurements of 

water transparency were collected from Jezioro 
Kowalskie reservoir on 9 August 2018. Ninety 
measurements were taken in the main reservoir and 60 
in the pre-reservoir (Fig. 1). Due to cloud cover in the 
part of the main reservoir, finally for analysis 
measuring points were selected from the pre-reservoir, 
characterized by higher variability of water 
transparency in comparison with the main part. To 
develop a quantitative relationship between field 
measurements and the Sentinel-2 sensor data, the field 
sampling day corresponded to the acquisition day of 
the satellite imagery. For the Secchi disk transparency 
(SDT) measurement, a standard black and white 
Secchi disk with a diameter of 0.2 m was used. The 
disk was lowered into the water and the depth when it 
was no longer visible was recorded. The water 
transparency was measured from a calibrated line. 

Data collection was carried out from 8:30 to 11.00 
coordinated universal time (UTC), to obtain ground 
observation data during registration of the reservoir by 
the satellite, at the same time avoiding external factors 
such as wind and waves. Additionally, the 
measurements were always collected on the sun 
shaded side of the boat, simultaneously avoiding the 
boat and observer shadows on the water. The sampling 
site positions were determined with a global 
positioning system tracker (GPS GARMIN OREGON 
300). 

 
2.3. Satellite imagery 
 
In order to fulfil the GMES mission 

requirements, ESA members decided to develop a 
complementary Sentinel satellite constellation for 
Earth observations. Sentinel-2 is a constellation of two 
satellites which are operating simultaneously, enabling 
effective and low-cost data collection. One of the basic 
objectives of the Sentinel-2 programme is to 
complement the SPOT (Satellite Pour l’Observation de 
la Terre) and Landsat missions in order to obtain a 
continuous, comparable data series. The orbit of 
Sentinel-2 is at 786 km altitude, and the satellites are 
phased at 180° to each other. The satellites Sentinel-
2A and Sentinel-2B were launched on June 23, 2015 
and on March 7, 2017 respectively. A sensing time of 
10.30 a.m., as the most suitable for compromise 
between minimizing cloud cover and ensuring sun 
illumination (Drusch et al., 2012), was used. The main 
instrument of the satellite, Multi- Spectral Imager 
(MSI), is based on the pushbroom concept and 
provides imagery from 56°S (South America) to 83°N 
(Greenland) with a swath width of 290 km. The MSI 
sensor measures reflectance in 13 spectral bands from 

 

 
Figure 1. Sampling location in the Jezioro Kowalskie reservoir, Poland. 
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the visible (VIS) and near-infrared (NIR) to the short-
wave infrared (SWIR) in resolution: 10 m (blue – B, 
green – G, red – R, near-infrared – NIR bands), 20 m 
(4 narrow bands for characterization of vegetation, 2 
short wave infrared – SWIR bands) and 60 m (coastal 
aerosol, water vapour and cirrus detection bands). The 
revisit time of the Sentinel-2 constellation varies from 
2-3 days (at mid latitudes) to 5 days (at the Equator).  

Sentinel-2B, level 1C imagery (ID= 
L1C_T33UXU_A007441_20180809T100021) 
acquired on 9 August 2018 (10:00:21 UTC) was 
downloaded from the Sentinel Hub website 
(https://sentinel-hub.com/) in a tile of 100 km2. Level 
1C products are radiometrically and geometrically 
corrected (Top of Atmosphere – TOA), including 
orthorectification and spatial assignment to a global 
reference system (WGS84, EPSG:4326). In the first 
step, the Sentinel-2 satellite imagery composite was 
created. To scale the Sentinel-2 composite to surface 
reflectance, the Dark Object Subtraction (DOS) 
method was carried out (Chavez, 1988) in the Semi-
Automatic Classification Plugin in QGIS software. 
The DOS is an atmospheric correction method, which 
is based on the assumption that some objects in the 
satellite imagery were under complete shadow during 
acquisition, their radiances are disturbed by 
atmospheric scattering and these pixels must have 
zero reflectance (Giardino et al., 2001; Chavez, 1996; 
Fernández-Manso et al., 2016). According to 
Lantzanakis et al., (2017), all analyzed correction 
methods (Second Simulation of Satellite Signal in the 
Solar Spectrum – 6S, Fast Line-of-sight Atmospheric 
Analysis of Hypercubes – FLAASH and DOS) 
perform results for water surfaces similarly. In the last 
processing step, the reflectance values of all bands 
were extracted from the Sentinel-2B composite.  
 

2.4. Regression model development  
 
In the first step, in-situ measurements were 

divided into two groups – training and test points. 
From 60 in-situ measurements in the pre-dam 
reservoir, 54 points were selected to build regression, 
while 6 points (10%) constituted a set of data for the 
test procedure. The training set of data contains 54 
SDT measurements (2 pts/ha), where the distance 
between sample points varies from 19 to 113 m with 
the mean of 48 m. Mean Secchi disk transparency was 
21 cm with the range of variation from 11 to 27 cm. 
The test set of data contains 6 SDT measurements 
(0.25 pts/ha), values of which were in the range of the 
training set. Additionally, test points were located in 
different parts of the reservoir, and the distance 
between sample points varies from 196 to 1665 m 
with a mean distance of 278 m. Mean Secchi disk 
transparency was 19 cm with the range of 14–23 cm. 
The mean distance between training and test points is 
48 m, minimum 24 m and maximum 70 m. 

In the second step, to build the regression 
model on the basis of Sentinel-2 imagery, all band 
reflectance values were extracted to the sampling 
points (Fig. 2). Paired reflectance values of satellite 
imagery and in-situ data were considered to develop 
the regression models for SDT estimation. For this 
purpose, a set of data containing 54 in-situ 
measurements and reflectance values of all Sentinel-
2 bands was compiled. Then, several variables (Table 
1) were used to determine the combination of satellite 
image bands characterized by the greatest 
significance with in-situ data based on the r2 values. 
Finally, the model equation based on the blue and red 
band ratio (Blue/Red) represents the highest agreement 
in comparison with other variables and was used for 
SDT estimation. As a result, a total of 54 pairs of data 
(satellite and in-situ measurements) and 2717 
reflectance values were used for development of the 
Secchi Disk Transparency image (SDTSatellite). Mapping 
and SDT images were performed in ArcGIS 10.6.1. 
software 

 
Table 1. Characteristics of Sentinel-2 products 

 

Satellite Bands used in final equations References 
Landsat 8 Green, Near Infrared Al-Fahdawi et al., (2015) 
Landsat 5, Landsat 7 Near Infrared Bohn et al., (2018) 
Landsat 5, Landsat 7 Blue, Near Infrared Bonansea et al., (2015) 
Landsat 4-5 Green, Red Duan et al., (2009) 
Landsat 5 Blue, Green Giardino et al., (2001) 
Landsat 5, Landsat 7 Blue, Red McCullough et al., (2012) 
Landsat 4, Landsat 5, Landsat 7 Blue, Red Olmanson et al., (2014) 
Landsat 5 Blue, Green Rodríguez et al., (2014) 
Landsat 8 Green, Red Ren et al., (2018) 
Landsat 5, Landsat 7 Blue, Green, Red Sass et al., (2007) 
MODIS, Landsat 5 Blue, Red Wu et al., (2008) 
Quickbird 2 Blue, Green, Red, Near Infrared Yüzügüllü & Aksoy, (2011) 
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Figure 2. Methodology applied in this study. 

 
2.5. Interpolation methods 

 
In the third step to present the spatial variability 

of the water transparency in the pre-dam reservoir 
five worldwide interpolation methods implemented in 
ArcGIS 10.6.1 software were used. The Inverse 
Distance Weighting (IDW) interpolation is based on 
the assumption that the value at an unmeasured point 
Zp can be approximated by a weighted average of 
observed values Zi. The value Zp at an unmeasured 
point is calculated in equation 1, where Zi (i = 1,2,. . 
.,n) are the measured value at n points, and wi are the 
weights given by: 

Zp=�wiZi (1)
n

i=1

 

 

wi=
di

-p

∑ di
-pn

i=1
 (2) 

where di is the distance between the ith measured 
value Zi and the unmeasured (predicted) point Zp, and 
p is the power (exponent) variable. During the IDW 
interpolation, a power value of 2 and a search radius 
of 12 points were assumed. 

The Natural Neighbour (NN) interpolation 
methods used the same formula as IDW. However, to 
select points for interpolation and compute the 
weights the Voronoi diagram is used. The weight wi 
of measured point Zi is expressed as: 
 

wi=
S(ri)

∑ S(ri)n
i=1

 (3) 
 

where S(ri) is the area of natural region ri; n is the 



358 

number of natural neighbours of unmeasured (interpolated) 
point Zp. 

The Spline (S) interpolation method estimates values 
at unmeasured points Zp using a function that minimizes 
overall surface curvature, resulting in a smooth surface that 
passes exactly through the input points. The formula of 
SPLINE for surface interpolation is expressed as: 

f(x,y)=T(x,y)+∑ λi
n
i=1 R(di) (4) 

where n is the number of measured points; λi are coefficients 
calculated by the solution of a system of linear equations; di 
is the distance from the unmeasured point Zp (x and y 
represented the location, i.e. the longitude and the latitude) 
to the ith measured point Zi. To calculate T(x,y) and R(di) the 
Regularized option in ArcGIS was used. During the S 
interpolation, the weight value of 0.1 and 12 as the number 
of points were assumed. 

The Trend (T) method is a statistical method using a 
global polynomial interpolation that enables one to find the 
surface that fits the measured points using least-squares 
regression fit. In this study to predict the value of 
unmeasured points the third-order interpolation is used as 
follows: 
Zp(x,y)= co+xc1+yc2+x2c3+xyc4+y2c5+x3c6+x2yc7+xy2c8+y3c9 (5) 
where x and y represented the location (the longitude and the 
latitude) of the unmeasured points Zp and the cn coefficient 
values are calculated using least-squares methods.  

Kriging is an advanced interpolation procedure that 
uses the same general formula as IDW. However, the 
weights wi are calculated by means of spatial autocorrelation 
analysis. This is done via a semivariogram, which represents 
the measured value spatial variation against the distance 
separating them. The values of the sample semivariogram 
are calculated from the equation: 

γ(d)=
1

2m
{Z(xi)-Z(xi+d)}2 (6) 

where m is the number of pairs of measured points separated 
by distance d, and Z(xi) and Z(xi + d) are the measured values 
at locations separated by distance d.  

Finally the semivariogram was modelled by fitting a 
theoretical function to the sample semivariogram. In this 
study ordinary kriging (OK) using spherical model with 
search radius settings being 12 as the number of points and 

maximum distance of 1000 m. 
To estimate spatial variation of Secchi disk 
transparency (SDT), the interpolation methods 
were applied: Ordinary Kriging (OK), Inverse 
Distance Weighted (IDW), Natural neighbour 
(NN), Spline (S) and Trend (T). On the basis 
of the selected interpolation method, five SDT 
images were created (SDTOK, SDTIDW, SDTNN, 
SDTS, SDTT).  
 
2.6. Assessment of interpolation methods 
  
To select the interpolation method 
characterized by the highest agreement with 
in-situ measurements, obtained results were 
compared with transparency in test points. 
Statistical analyses based on linear and non-
linear regressions were calculated using 
Statistica 13 software. To investigate the 
strength of the relationship between measured 
and predicted SDT values, the coefficient of 
determination (r2) was used. The statistical 
hypothesis test was conducted at the 
significance level of 0.05. For the accuracy 
analysis of the spatial extrapolation methods, 
the mean absolute error (MAE), mean square 
error (MSE), and root-mean-square error 
(RMSE) were calculated as: 

MAE= 
1
N

 ��
ZSD measured,   i- ZSD derived,   i

ZSD measured,   i
�

N

i=1

 (7) 

 

MSE= 
1
N

 ��ZSD measured,  i- ZSD derived,  i�
2
 (8)

N

i=1

 

 

RMSE= �
1
N

 � (ZSD measured,  i- ZSD derived,  i)
2

N

i=1

 (9) 

where N is the number of in-situ measurements, 
and ZSD measured and ZSD derived are Secchi disk 
depths from in-situ measurement and calculated 
on the basis of the interpolation method. 

 
Table 2. Characteristic values of Sentinel-2 bands used in this study. 

Sentinel-2 bands Training set (N= 54) Test set (N= 6) Pre-reservoir area 
B2 (Blue) 0.022 – 0.029 

0.025 – 0.001 
0.023 – 0.027 
0.025 – 0.001 

0.016 – 0.051 
0.025 – 0.002 

B3 (Green) 0.033 – 0.041 
0.037 – 0.002 

0.038 – 0.039 
0.038 – 0.001 

0.019 – 0.065 
0.037 – 0.004 

B4 (Red) 0.032 – 0.036 
0.034 – 0.001 

0.033 – 0.035 
0.034 – 0.001 

0.021 – 0.090 
0.035 – 0.003 

B8 (Near Infrared) 0.024 – 0.041 
0.033 – 0.004 

0.026 – 0.044 
0.034 – 0.006 

0.024 – 0.418 
0.080 – 0.091 

B2/B4 0.654 – 0.817 
0.732 – 0.036 

0.660 – 0.779 
0.737 – 0.045 

0.500 – 0.917 
0.717 – 0.044 

(minimum-maximum, mean-standard deviation) 
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Finally, in order to determine the uncertainty of 
the selected interpolation method in different parts of 
the reservoir, 50 different combinations of data sets 
(training and test) were selected. On the basis of 
spatial differences between data sets, the basic 
statistics were calculated in each of 2717 pixel central 
points (minimum, maximum, mean, standard 
deviation, range). Spatial distribution of statistical 
characteristics allows one to indicate parts of the 
reservoir characterized by the highest uncertainty of 
interpolation method supported by the satellite 
imagery.  

 
3. RESULTS 
 
Characteristic values of Sentinel-2 single 

bands and combination of blue and red bands are 
presented in Table 2. The minimum value of the 
B2/B4combination in the training set of data was 
0.654, while the maximum was 0.817. The mean 
value (±standard deviation) was 0.732 ± 0.036. 
Characteristic values of combination Sentinel-2 
bands in the test set are in the range of the training set. 
SDT values ranged from 0.660 to 0.779, with a mean 
value (±standard deviation) of 0.737 ± 0.045 in the 
test dataset. Values of applied regression for the 
whole pre-dam reservoir area varies from 0.500 to 
0.917, with the mean value (±standard deviation) of 
0.717 ± 0.044. 

The scatterplot (Fig. 3a) shows the relation 
between measured SDT and the variable based on the 
blue and red satellite band (B2/B4). The regression 
relationship of the function between the paired band-
ratio equation and measured SDT for the training 
dataset is characterized by the coefficient of 
determination equal to 0.830 (p<0.001). The applied 
model performed well in the test dataset (Fig. 3b). 
Measured and derived SDT values were disturbed 

along the 1:1 line, which indicates that the adopted 
algorithm could be successfully used to estimate 
Secchi disk transparency in Jezioro Kowalskie 
reservoir. The coefficient of determination for 
delivered and in-situ measured SDT is 0.844 (p<0.05). 

Spatial changes of water transparency estimated 
by applied interpolation methods are presented in 
Figure 4. The largest differences between interpolation 
methods in the test dataset occur at points no. 5 and 6, 
which is equals to 11 and 12 cm, respectively. The 
points are located near the small island in the eastern 
part of the pre-dam reservoir. The minimum values at 
point no. 5 are characterized by the interpolation 
method based on satellite imagery (12 cm), while the 
highest is estimated by the Natural Neighbour method 
(23 cm). SDT values measured in this location during 
in-situ collection of data are equal to 14 cm. The 
minimum SDT values at point no. 6 are characterized 
by the Ordinary Kriging and Trend methods (20 cm), 
while the highest is estimated by the Spline method (31 
cm). SDT measured in this location during in-situ 
collection of data is 23 cm; the same SDT value was 
obtained on the basis of the interpolation method based 
on satellite imagery. The smallest differences between 
interpolation methods occur at points no. 1 and 2, 
equalling 4 and 6 cm, respectively. SDT values 
measured in these locations are 22 and 21 cm. The 
highest agreement with in-situ measurement is 
characterized by the method based on satellite 
imagery, the derived SDT values equalling 22 and 21 
cm also (Fig. 4). 

Figure 5 summarizes the variations of Secchi 
disk transparency based on in-situ measurements and 
interpolation methods. The model applied on the 
basis of the Sentinel-2 band-ratio equation shows a 
median SDT value of 20 cm with the range of variation 
12-23 cm. SDT derived from Ordinary Kriging method 
varies from 19 to 22 cm with a median value of 20 cm. 

 

 
Figure 3. Relationship between measured Secchi Disk Transparency (SDT) and (a) blue/red band reflectance of 

Sentinel-2 data and (b) derived SDT in the Jezioro Kowalskie reservoir, Poland. 
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Figure 4. Spatial changes of water transparency estimated by applied interpolation methods in the Jezioro Kowalskie 

reservoir, Poland. 
 

Figure 5. Secchi disk transparency (SDT) estimated on 
the basis of applied interpolation methods. 
 

Estimation of SDT based on the Inverse Distance 
Weighted method allows one to predict an SDT value 
from 21 to 23 cm, while the median value is 22. The 

highest median value was obtained on the basis of 
Natural Neighbour and was 23 cm with the range of 
variation 21-24 cm. SDT derived from the Spline 
method varies from 14 to 31 cm with a median value of 
17 cm. The model applied on the basis of the Trend 
method shows a median SDT value of 19 cm with the 
range of variation 14-22 cm (Fig. 5). 

The highest coefficient of determination in the 
test dataset was obtained for the interpolation method 
based on satellite imagery and was 0.844 (p<0.05), 
while the lowest was 0.030 for the IDW method (Table 
2). According to Rufo et al., (2018), the mean absolute 
error (MAE) is used to detect bias; it should be 0 when 
estimated values are equal to those measured. In this 
study, the MAE values are similar and equal to 17 and 
18, regardless of the adopted interpolation method. The 
lowest mean square error (MSE) was obtained for 
interpolation method based on satellite imagery and was 
3, while the highest was 33 for the Natural Neighbour 
method. The root-mean-square error (RMSE) is used to 
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compare predicted values based on different 
interpolation methods with the measured values; if 
RMSE equals 0 it means that the predicted values are 
the same as the measured ones (Rufo et al. 2018). In this 
study, the lowest RMSE value was obtained for the 
model applied on the basis of the Sentinel-2 band-ratio 
equation and was 1.65. The highest RMSE value was 
5.77 and was obtained for the Natural Neighbour 
method (Table 3). 

 
Figure 6. Relationship between 50 variants of derived Secchi 
Disk Transparency (SDT) and blue/red band reflectance of 
Sentinel-2 data in the Jezioro Kowalskie reservoir, Poland. 

 
In order to determine the uncertainty of the model 

applied on the basis of the Sentinel-2 band-ratio 
equation, 50 different combinations of datasets (training 

and test) were selected. The coefficient of determination 
varies from 0.763 to 0.935 with the mean value of 0.835. 
Training datasets are compiled in Figure 6. In this study, 
the quotient of blue and red band varies from 0.654 to 
0.817 (Table 2). Model prediction in this range is 
characterized by the highest stability; the maximum 
difference between training datasets occurs in the 
boundary of the dataset and is less than 2 cm. The 
uncertainty of the derived SDT values is higher beyond 
the boundaries of the developed model. 

In order to indicate parts of the reservoir 
characterized by the highest uncertainty of predicted 
SDT values, the spatial distribution of differences 
between 50 combinations of datasets were calculated 
(Fig. 7). The analysis was carried out for each of 2717 
pixel central points from the Sentinel-2 satellite. 
Standard deviations vary from 0.0 to 0.7. The results 
show that more than 91% of the reservoir is 
characterized by a standard deviation less than 0.2, 
while only 0.25% shows values higher than 0.5. The 
highest standard deviations occur near the shoreline of 
the reservoir and the dam. It might be related to the 
small depth of water and the possibility of spectral 
reflection from the bottom of the reservoir. 
Additionally, there are wooded areas next to the 
reservoir shoreline which may have an influence on the 
reflectance signal from the satellite sensor. The 
difference between minimum and maximum values 
(range) in most of the reservoir (98%) is less than 1 cm. 

 
Table 3. Characteristic values of Sentinel-2 bands used in this study. 

Interpolation method R R2 p MAE MSE RMSE 
Satellite 0.919 0.844 0.009 18 3 1.65 
Kriging -0.764 0.584 0.077 18 20 4.51 
IDW -0.173 0.030 0.743 17 23 4.78 
Natural Neighbour -0.434 0.189 0.389 17 33 5.77 
Spline 0.757 0.574 0.081 18 15 3.85 
Trend 0.635 0.403 0.176 18 7 2.67 

 

 
Figure 7. Spatial characteristics of standard deviation and range on the basis of 50 variants of derived Secchi Disk 

Transparency (SDT). 



362 

4. DISCUSSION 
 
The main objective of this study was to apply 

the satellite imagery for estimating water transparency. 
Additionally, various interpolation methods were used 
to deliver Secchi disk transparency (SDT). The 
methods were tested against in-situ measurements 
conducted in the Jezioro Kowalskie reservoir. In this 
study, the most common interpolation techniques were 
used: Kriging, IDW, Natural Neighbour, Spline and 
Trend methods. Shen et al., (2019) stated that Ordinary 
Kriging is an interpolation method with moderately 
acceptable accuracy, while IDW decreased the 
accuracy for environmental analyses. In turn, Gong et 
al., (2014) reported that accuracy between measured 
and estimated values was higher with the IDW method 
than Kriging. Some of the interpolation methods are 
still not well recognized for environmental analysis 
applications such as the Spline or Trend method. The 
results in this study confirm the conclusion of Shen et 
al., (2019) and Bhunia et al., (2016) that Kriging is 
superior to the IDW interpolation method, which has 
the worst accuracy. However, due to the differences of 
accuracy depending on interpolation methods in 
previous studies, it is still inconsistent which 
interpolation method is more accurate than another. 
The results show that the method based on satellite 
imagery is characterized by the highest accuracy and 
can be retrieved to assess water transparency in 
reservoirs. The high correlation between in-situ 
measurements and remote sensing data has been 
confirmed in many studies (Dörnhöfer et al., 2018a, 
Cannizzaro et al., 2008, Yadav et al., 2017). In 
comparison with other satellites (Al-Fahdawi et al., 
2015, Bohn et al., 2018, Wu et al., 2008), the Sentinel-
2 provides non-cost products with unprecedented 
spatial and temporal resolution. It makes it possible to 
estimate Secchi disk transparency as data with a spatial 
resolution equal to 10 m. The paper concludes that 
applying the interpolation method based on satellite 
imagery could be an economical and feasible solution 
for mapping Secchi disk depth in inland waters. Ren et 
al., (2018) and Wu et al., (2008) developed a reliable 
standard equation to predict water transparency in 
lakes based on satellite data only. However, comparing 
the RMSE and MEA values for the same equation 
calculated in several studies shows large differences. It 
confirms that developing a single equation for 
remotely sensed water clarity is still uncertain, but at 
the same time its usefulness for monitoring of aquatic 
environments is undeniable (Alikas & Kratzer, 2017). 
According to Butt & Nazeer (2015), improved 
techniques of atmospheric correction could have an 
increasing impact on developing a reliable standard 
equation. For example, Kratzer & Vinterhav (2010) 

show that MEGS atmospheric correction was 
characterized as a more accurate technique than FUB 
and C2R. In this study, the DOS method was selected, 
which could have an impact on disturbance of results 
on the basis of standard algorithms. However, 
Lantzanakis et al., (2017) showed that several 
correction methods (6S, FLAASH and DOS) achieve 
similar results for water surfaces. Higher errors of the 
standard equations could be caused by rare specific 
phenomena also, for example an exceptional bloom of 
Chrysochromulina spp. in the whole Baltic Sea 
(Kratzer & Vinterhav 2010) or in Himmerfjärden bay 
(Kratzer et al., 2008). Previous studies (Sojka et al., 
2016, Sojka et al., 2017) confirm that Jezioro 
Kowalskie is exposed to algal bloom phenomena and 
eutrophication, especially in the pre-dam zone. During 
in-situ measurements for this study, this part of the 
reservoir was characterized by lower water 
transparency in comparison with the main part due to 
the high concentration of phytoplankton. Various 
factors (defined above) which have an impact on the 
accuracy of standard equations makes it necessary to 
search for a methodology adapted to a particular 
analysis. One of the most promising solutions seems to 
be building regression models between variables of 
satellite imagery band values and in-situ 
measurements, separately for each analysis. This study 
shows that the most accurate variable seems to be the 
blue and red band quotient (Blue/Red), which was also 
noted in previous studies (Kloiber et al., 2002, 
Urbański et al., 2016). Building of independent 
equations based on satellite imagery is characterized 
by higher accuracy than standard equations. Obtained 
results show that the highest values occur near the 
shoreline of the reservoir, which can be related to 
overgrowth areas or small depth water. In these places 
the spectral reflectance value may be disrupted by 
plants and the bottom of the reservoir. The 
methodology was applied for the reservoir 
characterized by high concentration of algae blooms, 
which is one of the biggest problems for lowland 
reservoirs. Despite small depth in pre-reservoir, during 
in-situ measurements the bottom was invisible due to 
low water transparency. In authors opinion, 
methodology for reservoirs with disrupted reflectance 
data by bottom should be further developed. In this 
case, in-situ data should be collected in clear reservoirs 
characterized by high water transparency in months 
where vegetation process has already started. It will 
provide information about possibility using semi-
automatic equations in water bodies with diverse water 
transparency.  

According to the authors, the main 
disadvantage of the applied methodology to estimate 
Secchi disk transparency is the fact that each analysis 
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requires its own equation. Additionally, this semi-
automatic methodology requires in-situ 
measurements which will be representative for the 
whole range of water transparency. The 
determination of in-situ measurement locations is 
crucial for a comprehensive overview of the Secchi 
disk transparency. 
 

5. CONCLUSION 
 
The conducted research allowed the 

following specific conclusions to be formulated: 
− individual regression models created on the basis 

of satellite imagery allow higher accuracy of 
assessment of the water transparency in reservoirs 
compared to commonly used interpolation 
methods based on GIS (Kriging, IDW, Natural 
Neighbour, Spline, Trend). 

− The highest accuracy variable to estimate Secchi 
disk transparency on the basis of satellite data is 
the blue and red band ratio (Blue/Red). 

− The highest uncertainty of the obtained results 
occurs near the shoreline of the reservoir and near 
the dam. It might be related to overgrowth areas or 
small depth water and the possibility of spectral 
reflection from plants and the bottom of the 
reservoir. Additionally, it might be related to 
wooded areas near the reservoir shoreline which 
can have an influence on the reflectance signal 
from the satellite sensor. 

− The highest uncertainty associated with the 
applied individual regression occurs in the case of 
limit values of the B2/B4 ratio, which were not 
used during regression model development. 

− The major limitation of using Sentinel-2 data is 
cloud coverage, which significantly reduces the 
number of observations and accuracy of the 
developed model. 

− Future studies should be carried out to determine 
how big the set of in-situ measurements should 
be to obtain highly accurate interpolation. 
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